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Introduction

I The physical properties of graphene make it a good candidate
material for the next generation of electronic devices and heat
management systems.

I Knowledge of the lattice parameter as a function of
temperature is required for such applications.

I Experimental measurements are inconclusive and there is
significant discrepancy between different theoretical
calculations.
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The thermodynamics of deformation (i)

I The fundamental thermodynamic relation for deformed bodies
is

dU = TdS + Ωσijdεij ,

where U is the internal energy, T is the temperature, S is the
entropy, Ω is the volume, σ is the stress tensor, and ε is the
strain tensor.

I The differential Gibbs free energy dG of a system subject to
fixed external stress σext is

dG = dF − Ωσext
ij dεij ,

where F is the Helmholtz free energy.

I At constant temperature, the equilibrium configuration of the
system is found by minimising the Gibbs free energy with
respect to variations in strain.
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The thermodynamics of deformation (ii)

I Within the Born-Oppenheimer approximation, the Helmholtz
free energy is a sum of electronic and vibrational terms.

I Using the definition of the stress tensor, we have

dFelec = Ωσelec
ij dεij ,

where σelec is the electronic contribution to the internal
stress, and

dFvib = Ωσvib
ij dεij ,

where σvib is the vibrational contribution to the internal stress.

I Therefore, equilibrium is reached when the internal and
external stresses balance,

σelec + σvib = σext .
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The quasiharmonic approximation

I The vibrational free energy in the harmonic approximation is
given by

Fvib =
1

2

∑
n,k

ωnk +
1

β

∑
n,k

ln
(

1− e−βωnk

)
,

where β is the inverse temperature and ωnk is the frequency
of the phonon with branch index n at wave vector k.

I In a perfectly harmonic crystal, the phonon frequencies are
independent of volume, so thermal expansion is an intrinsically
anharmonic phenomenon.

I In the quasiharmonic approximation, we assume that the
harmonic approximation holds at all volumes.
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Thermal expansion tensor (i)

I In general, thermal expansion is described by a tensor α
whose components are given by

αij =

(
∂εij
∂T

)
σ

.

I This can be rewritten as

αij = −
(
∂εij
∂σkl

)
T

(
∂σkl
∂T

)
ε

,

where

Sijkl =

(
∂εij
∂σkl

)
T

are the components of the so-called elastic compliance tensor.
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Thermal expansion tensor (ii)

I Within the harmonic approximation, it can be shown that(
∂σkl
∂T

)
ε

=
∑
n,k

cnk
ωnk

(
∂ωnk
∂εkl

)
,

where cnk is the contribution of the phonon with branch index
n at wave vector k to the specific heat.

I Therefore, we can write the components of α as

αij =
∑
n,k

Sijklγklnkcnk ,

where the

γklnk = − 1

ωnk

(
∂ωnk
∂εkl

)
are referred to as Grüneisen parameters.
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Grüneisen formalism

I Graphene has one free lattice parameter a whose temperature
dependence is characterised by the linear thermal expansion
coefficient

α =
1

a

(
∂a

∂T

)
σ

.

I The phonon frequencies are assumed to be linear functions of
the lattice parameter and the Grüneisen parameters are given
by

γnk = − a

ωnk

∣∣∣∣
0

(
∂ωnk
∂a

)
0

,

where the subscript 0 indicates a quantity evaluated at the
static lattice parameter a0.
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Phonon dispersion
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Grüneisen parameters
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Direct minimisation of the free energy

I An obvious limitation of the Grüneisen formalism is the
assumption that the phonon frequencies are linear functions of
the lattice parameter.

I Instead, we can calculate the Helmholtz free energy at several
different values of the lattice parameter and use it to
determine the Gibbs free energy.

I Direct minimisation of the Gibbs free energy with respect to
the lattice parameter provides the equilibrium structure at any
temperature.

I We could calculate the vibrational Helmholtz free energy using
a more accurate method than the quasiharmonic
approximation.

I In general, this approach is restricted to highly symmetric
systems with only one or two free lattice parameters.
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Quasiharmonic lattice parameter
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Quasiharmonic thermal expansion coefficient
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The vibrational stress tensor from first principles (i)

I The stress tensor of a system described by a Hamiltonian Ĥ is

σij =
1

Z
∑
s

1

Ω

∂
〈

Φs

∣∣∣Ĥ∣∣∣Φs

〉
∂εij

e−βEs ,

where Z is the partition function and |Φs〉 is an eigenstate of
Ĥ with energy Es.

I The vibrational Hamiltonian is given by

Ĥvib =
∑
κ,λ

1

2mκ
p̂2
κλ + VBO ,

where p̂κλ is the momentum of the κth atom in the λth
primitive cell and VBO is the Born-Oppenheimer potential
energy surface.
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The vibrational stress tensor from first principles (ii)

I The contribution to the vibrational stress tensor from the
kinetic energy part of the vibrational Hamiltonian is

σvib,kinetic
ij = − 1

Z
∑
s

1

Ω

〈
Φs

∣∣∣∣∣∣
∑
κ,λ

1

mκ
p̂iκλp̂jκλ

∣∣∣∣∣∣Φs

〉
e−βEs .

I The contribution to the vibrational stress tensor from the
potential energy part of the vibrational Hamiltonian is

σvib,potential
ij =

1

Z
∑
s

〈
Φs

∣∣∣σelec
ij

∣∣∣Φs

〉
e−βEs ,

where σelec
ij can be determined from the electronic

Hamiltonian Ĥelec.
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Effective external stress

I The vibrational Helmholtz free energy is an approximately
linear function of strain for the system configurations relevant
to thermal expansion.

I Define an effective external stress tensor

σeff = σext − σvib ,

such that
dG = dFelec − Ωσeff

ij dεij .

I This reformulation allows us to use electronic structure
methods to minimise the Gibbs free energy with respect to
strain, but still include vibrational effects.

I May need to solve self-consistently, depending on how much
the vibrational stress tensor varies over the configurations
involved.
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Anharmonic lattice parameter
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Anharmonic thermal expansion coefficient
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Conclusions

I Discrepancy between quasiharmonic and anharmonic
calculations of thermal expansion coefficient of graphene.

I Quasiharmonic calculations predict that the lattice parameter
monotonically decreases with temperature between 0 K and
1000 K.

I Anharmonic calculations predict that the lattice parameter has
a minimum at about 500 K.
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