Thermal expansion of graphene beyond the quasiharmonic approximation

Jonathan Lloyd-Williams

Electronic Structure Discussion Group Cambridge – 6th April 2016

email: jhl50@cam.ac.uk

www: http://www.tcm.phy.cam.ac.uk/~jh150

Introduction

- The physical properties of graphene make it a good candidate material for the next generation of electronic devices and heat management systems.
- Knowledge of the lattice parameter as a function of temperature is required for such applications.
- Experimental measurements are inconclusive and there is significant discrepancy between different theoretical calculations.

The thermodynamics of deformation (i)

 The fundamental thermodynamic relation for deformed bodies is

$$\mathsf{d}\mathcal{U} = T\mathsf{d}S + \Omega\sigma_{ij}\mathsf{d}\epsilon_{ij}\,,$$

where ${\cal U}$ is the internal energy, T is the temperature, S is the entropy, Ω is the volume, $\pmb{\sigma}$ is the stress tensor, and $\pmb{\epsilon}$ is the strain tensor.

 The differential Gibbs free energy dG of a system subject to fixed external stress σ^{ext} is

$$\mathsf{d}\mathcal{G} = \mathsf{d}\mathcal{F} - \Omega\sigma_{ij}^{\mathsf{ext}}\mathsf{d}\epsilon_{ij}\,,$$

where \mathcal{F} is the Helmholtz free energy.

At constant temperature, the equilibrium configuration of the system is found by minimising the Gibbs free energy with respect to variations in strain.

The thermodynamics of deformation (ii)

- Within the Born-Oppenheimer approximation, the Helmholtz free energy is a sum of electronic and vibrational terms.
- Using the definition of the stress tensor, we have

$$\mathsf{d}\mathcal{F}^{\mathsf{elec}} = \Omega \sigma_{ij}^{\mathsf{elec}} \mathsf{d}\epsilon_{ij} \,,$$

where $\pmb{\sigma}^{\rm elec}$ is the electronic contribution to the internal stress, and

$$\mathsf{d}\mathcal{F}^{\mathsf{vib}} = \Omega \sigma_{ij}^{\mathsf{vib}} \mathsf{d}\epsilon_{ij} \,,$$

where $\sigma^{\rm vib}$ is the vibrational contribution to the internal stress.

 Therefore, equilibrium is reached when the internal and external stresses balance,

$$oldsymbol{\sigma}^{\mathsf{elec}} + oldsymbol{\sigma}^{\mathsf{vib}} = oldsymbol{\sigma}^{\mathsf{ext}}$$
 .

The quasiharmonic approximation

The vibrational free energy in the harmonic approximation is given by

$$\mathcal{F}^{\mathsf{vib}} = \frac{1}{2} \sum_{n,\mathbf{k}} \omega_{n\mathbf{k}} + \frac{1}{\beta} \sum_{n,\mathbf{k}} \ln\left(1 - \mathrm{e}^{-\beta\omega_{n\mathbf{k}}}\right) \,,$$

where β is the inverse temperature and $\omega_{n\mathbf{k}}$ is the frequency of the phonon with branch index n at wave vector \mathbf{k} .

- In a perfectly harmonic crystal, the phonon frequencies are independent of volume, so thermal expansion is an intrinsically anharmonic phenomenon.
- In the quasiharmonic approximation, we assume that the harmonic approximation holds at all volumes.

Thermal expansion tensor (i)

In general, thermal expansion is described by a tensor α whose components are given by

$$\alpha_{ij} = \left(\frac{\partial \epsilon_{ij}}{\partial T}\right)_{\boldsymbol{\sigma}}$$

This can be rewritten as

$$\alpha_{ij} = -\left(\frac{\partial \epsilon_{ij}}{\partial \sigma_{kl}}\right)_T \left(\frac{\partial \sigma_{kl}}{\partial T}\right)_{\boldsymbol{\epsilon}},$$

where

$$S_{ijkl} = \left(\frac{\partial \epsilon_{ij}}{\partial \sigma_{kl}}\right)_T$$

are the components of the so-called elastic compliance tensor.

Thermal expansion tensor (ii)

Within the harmonic approximation, it can be shown that

$$\left(\frac{\partial\sigma_{kl}}{\partial T}\right)_{\boldsymbol{\epsilon}} = \sum_{n,\mathbf{k}} \frac{c_{n\mathbf{k}}}{\omega_{n\mathbf{k}}} \left(\frac{\partial\omega_{n\mathbf{k}}}{\partial\epsilon_{kl}}\right) \,,$$

where $c_{n\mathbf{k}}$ is the contribution of the phonon with branch index n at wave vector \mathbf{k} to the specific heat.

• Therefore, we can write the components of α as

$$\alpha_{ij} = \sum_{n,\mathbf{k}} S_{ijkl} \gamma_{kln\mathbf{k}} c_{n\mathbf{k}} \,,$$

where the

$$\gamma_{kln\mathbf{k}} = -\frac{1}{\omega_{n\mathbf{k}}} \left(\frac{\partial \omega_{n\mathbf{k}}}{\partial \epsilon_{kl}} \right)$$

are referred to as Grüneisen parameters.

ESDG - 6th April 2016

Grüneisen formalism

 Graphene has one free lattice parameter a whose temperature dependence is characterised by the linear thermal expansion coefficient

$$\alpha = \frac{1}{a} \left(\frac{\partial a}{\partial T} \right)_{\sigma}$$

 The phonon frequencies are assumed to be linear functions of the lattice parameter and the Grüneisen parameters are given by

$$\gamma_{n\mathbf{k}} = -\left.\frac{a}{\omega_{n\mathbf{k}}}\right|_0 \left(\frac{\partial\omega_{n\mathbf{k}}}{\partial a}\right)_0 \, .$$

where the subscript 0 indicates a quantity evaluated at the static lattice parameter a_0 .

Phonon dispersion

Grüneisen parameters

Direct minimisation of the free energy

- An obvious limitation of the Grüneisen formalism is the assumption that the phonon frequencies are linear functions of the lattice parameter.
- Instead, we can calculate the Helmholtz free energy at several different values of the lattice parameter and use it to determine the Gibbs free energy.
- Direct minimisation of the Gibbs free energy with respect to the lattice parameter provides the equilibrium structure at any temperature.
- We could calculate the vibrational Helmholtz free energy using a more accurate method than the quasiharmonic approximation.
- In general, this approach is restricted to highly symmetric systems with only one or two free lattice parameters.

Quasiharmonic lattice parameter

ESDG - 6th April 2016

Quasiharmonic thermal expansion coefficient

ESDG - 6th April 2016

The vibrational stress tensor from first principles (i)

• The stress tensor of a system described by a Hamiltonian \hat{H} is

$$\sigma_{ij} = \frac{1}{\mathcal{Z}} \sum_{s} \frac{1}{\Omega} \frac{\partial \left\langle \Phi_s \left| \hat{H} \right| \Phi_s \right\rangle}{\partial \epsilon_{ij}} \mathrm{e}^{-\beta E_s} \,,$$

where \mathcal{Z} is the partition function and $|\Phi_s\rangle$ is an eigenstate of \hat{H} with energy E_s .

• The vibrational Hamiltonian is given by

$$\hat{H}^{\rm vib} = \sum_{\kappa,\lambda} \frac{1}{2m_{\kappa}} \hat{\mathbf{p}}_{\kappa\lambda}^2 + V_{\rm BO} \,,$$

where $\hat{\mathbf{p}}_{\kappa\lambda}$ is the momentum of the κ th atom in the λ th primitive cell and V_{BO} is the Born-Oppenheimer potential energy surface.

The vibrational stress tensor from first principles (ii)

The contribution to the vibrational stress tensor from the kinetic energy part of the vibrational Hamiltonian is

$$\sigma_{ij}^{\mathsf{vib},\mathsf{kinetic}} = -\frac{1}{\mathcal{Z}} \sum_{s} \frac{1}{\Omega} \left\langle \Phi_s \left| \sum_{\kappa,\lambda} \frac{1}{m_{\kappa}} \hat{p}_{i\kappa\lambda} \hat{p}_{j\kappa\lambda} \right| \Phi_s \right\rangle \mathrm{e}^{-\beta E_s}$$

The contribution to the vibrational stress tensor from the potential energy part of the vibrational Hamiltonian is

$$\sigma_{ij}^{\text{vib,potential}} = \frac{1}{\mathcal{Z}} \sum_{s} \left\langle \Phi_s \left| \sigma_{ij}^{\text{elec}} \right| \Phi_s \right\rangle \mathrm{e}^{-\beta E_s} \,,$$

where $\sigma_{ij}^{\text{elec}}$ can be determined from the electronic Hamiltonian \hat{H}^{elec} .

Effective external stress

- The vibrational Helmholtz free energy is an approximately linear function of strain for the system configurations relevant to thermal expansion.
- Define an effective external stress tensor

$$\sigma^{\mathsf{eff}} = \sigma^{\mathsf{ext}} - \sigma^{\mathsf{vib}}$$
,

such that

$$\mathrm{d}\mathcal{G} = \mathrm{d}\mathcal{F}^{\mathrm{elec}} - \Omega\sigma_{ij}^{\mathrm{eff}}\mathrm{d}\epsilon_{ij}\,.$$

- This reformulation allows us to use electronic structure methods to minimise the Gibbs free energy with respect to strain, but still include vibrational effects.
- May need to solve self-consistently, depending on how much the vibrational stress tensor varies over the configurations involved.

Anharmonic lattice parameter

Anharmonic thermal expansion coefficient

ESDG - 6th April 2016

Conclusions

- Discrepancy between quasiharmonic and anharmonic calculations of thermal expansion coefficient of graphene.
- Quasiharmonic calculations predict that the lattice parameter monotonically decreases with temperature between 0 K and 1000 K.
- Anharmonic calculations predict that the lattice parameter has a minimum at about 500 K.

Acknowledgements

Bartomeu Monserrat

Richard Needs

