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Introduction

» The physical properties of graphene make it a good candidate
material for the next generation of electronic devices and heat
management systems.

» Knowledge of the lattice parameter as a function of
temperature is required for such applications.

» Experimental measurements are inconclusive and there is
significant discrepancy between different theoretical
calculations.
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The thermodynamics of deformation (i)

» The fundamental thermodynamic relation for deformed bodies
is
did = TdS + Qo;jde;;

where U is the internal energy, T is the temperature, S is the
entropy, €2 is the volume, o is the stress tensor, and € is the
strain tensor.

» The differential Gibbs free energy dG of a system subject to
fixed external stress o®* is

dG =dF — Qaf;-(tdeij ,

where F is the Helmholtz free energy.

» At constant temperature, the equilibrium configuration of the
system is found by minimising the Gibbs free energy with
respect to variations in strain.
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The thermodynamics of deformation (ii)

» Within the Born-Oppenheimer approximation, the Helmholtz
free energy is a sum of electronic and vibrational terms.

» Using the definition of the stress tensor, we have

dfelec _ QO’eIechZ]

elec

where o is the electronic contribution to the internal

stress, and
dF® = Qo}Pde;; ,
where VP is the vibrational contribution to the internal stress.
» Therefore, equilibrium is reached when the internal and

external stresses balance,

o,elec + o,VIb — o_ext )
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The quasiharmonic approximation

» The vibrational free energy in the harmonic approximation is
given by

FVib — ank + = 3 Z In ( Bw”“) ,

where (3 is the inverse temperature and w,y is the frequency
of the phonon with branch index n at wave vector k.

» In a perfectly harmonic crystal, the phonon frequencies are
independent of volume, so thermal expansion is an intrinsically
anharmonic phenomenon.

» In the quasiharmonic approximation, we assume that the
harmonic approximation holds at all volumes.
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Thermal expansion tensor (i)

> In general, thermal expansion is described by a tensor a
whose components are given by

8617
Oéij = aT .

» This can be rewritten as

s — — 6eij 8Jkl
K dow )p\ 0T ).’

867;]'
Sz]kl - (agkl>T

are the components of the so-called elastic compliance tensor.

where
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Thermal expansion tensor (ii)

» Within the harmonic approximation, it can be shown that

<80'kl> :chk<8wnk>
orT € 'k Wnk 6€kl ’
where ¢, is the contribution of the phonon with branch index

n at wave vector k to the specific heat.

» Therefore, we can write the components of « as
Q= Z Sijkl VkinkCnk »
n,k

where the

1 < Gwnk >
Vhink = ———
wnk \ O€x

are referred to as Griineisen parameters.
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Gruneisen formalism

» Graphene has one free lattice parameter a whose temperature
dependence is characterised by the linear thermal expansion

coefficient
1[0
a \OT o

» The phonon frequencies are assumed to be linear functions of
the lattice parameter and the Griineisen parameters are given

by
(%)
o\ da 0’

where the subscript 0 indicates a quantity evaluated at the
static lattice parameter ay.

a

Tnk = —
Wnk
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Phonon dispersion
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Grlineisen parameters
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Direct

minimisation of the free energy

An obvious limitation of the Griineisen formalism is the
assumption that the phonon frequencies are linear functions of
the lattice parameter.

Instead, we can calculate the Helmholtz free energy at several
different values of the lattice parameter and use it to
determine the Gibbs free energy.

Direct minimisation of the Gibbs free energy with respect to
the lattice parameter provides the equilibrium structure at any
temperature.

We could calculate the vibrational Helmholtz free energy using
a more accurate method than the quasiharmonic
approximation.

In general, this approach is restricted to highly symmetric
systems with only one or two free lattice parameters.
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Quasiharmonic lattice parameter
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Quasiharmonic thermal expansion coefficient
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The vibrational stress tensor from first principles (i)

» The stress tensor of a system described by a Hamiltonian His

11 0(0s || 2,)
7Tz - Q Oeij

e PEs ,

where Z is the partition function and |®;) is an eigenstate of
H with energy E;.

» The vibrational Hamiltonian is given by

n 1
vib ~2
HY"® = g 2mmpﬁ)\—|—VBo,
Ky

where P is the momentum of the kth atom in the Ath
primitive cell and Vgg is the Born-Oppenheimer potential
energy surface.
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The vibrational stress tensor from first principles (ii)

» The contribution to the vibrational stress tensor from the
kinetic energy part of the vibrational Hamiltonian is

b kinett 1 1 1, . _
O'Z]I»b’kmetlc = —2 Z 5 <®5 Z miﬁpili/\pjl‘”u)\ ©8> € IBES .
s Ky

» The contribution to the vibrational stress tensor from the
potential energy part of the vibrational Hamiltonian is

vib,potential __ 1
% =z (]
S

f]'-ec can be determined from the electronic

Hamiltonian He'ec.

elec
%)

<I>5> e FPbs ,

where o
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Effective external stress

» The vibrational Helmholtz free energy is an approximately
linear function of strain for the system configurations relevant
to thermal expansion.

» Define an effective external stress tensor

such that

dg = dF** — Qo{l'de;; .

» This reformulation allows us to use electronic structure
methods to minimise the Gibbs free energy with respect to
strain, but still include vibrational effects.

» May need to solve self-consistently, depending on how much

the vibrational stress tensor varies over the configurations
involved.
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Anharmonic lattice parameter
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Anharmonic thermal expansion coefficient
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Conclusions

> Discrepancy between quasiharmonic and anharmonic
calculations of thermal expansion coefficient of graphene.

» Quasiharmonic calculations predict that the lattice parameter
monotonically decreases with temperature between 0K and
1000 K.

» Anharmonic calculations predict that the lattice parameter has
a minimum at about 500 K.
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