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1. Show that, for a van der Waals gas, the specific heat at constant volume,
CV , obeys

(

∂CV

∂V

)

T

= 0.

2. The Gibbs free energy of an imperfect gas containing N molecules is
given, in terms of its natural variables T , p and N , by

G = NkBT ln

(

p

p0

)

−NA(T ) p,

where p0 is a constant and A is a function of T only. Derive expressions in
terms of T , p, V , and N for:
(a) the equation of state of the gas;
(b) the entropy, S;
(c) the enthalpy, H;
(d) the internal energy, U ;
(e) the Helmholtz free energy, F .
Can all equilibrium thermodynamic information about the gas be obtained
from a knowledge of: (i) F (T, V,N); (ii) the equation of state and U(T, p,N)?

3. The entropy of a monatomic ideal gas is given by the Sackur-Tetrode
equation which can be written in the form:

S(U, V,N) = NkB ln

{

α
V

N

(

U

N

)3/2
}

,

where α is a constant to be derived later in the course.
Invert this expression to get U(S, V,N). From this, obtain the equation

of state expressing p as a function of V,N and T .

4. Use a Maxwell relation and the chain rule to show that for any substance
the rate of change of T with p in a reversible adiabatic compression is given
by

(

∂T

∂p

)

S

=

(

T

Cp

)(

∂V

∂T

)

p

.



Find an equivalent expression for the adiabatic rate of change of T with V ,
and check that both results are valid for an ideal monatomic gas.

5. Write brief notes on thermodynamic equilibrium in closed and open
systems.

6. Under what conditions is the Helmholtz free energy F a minimum for
a system in equilibrium? The work corresponding to an increase in the
surface area of a liquid is

dW = Γ dA

where Γ is the surface tension, and A is the area of the surface.

Consider a bubble of air in a large container of liquid in equilibrium.
Write the total Helmholtz free energy of the system as the sum of contribu-
tions from the air in the bubble, Fa, the surface of the bubble, Fs, and the
surrounding liquid, Fl. Show that the pressure of the air inside the bubble
is equal to pl + 2Γ/r, where pl is the pressure of the liquid.

7. What is the minimum work required to extract 1 mole of pure O2 from a
large volume of air at the same temperature and pressure, if air is regarded
as being composed of 1 volume of O2 mixed with 4 volumes of N2. [Ans.
13.4 J K−1 × T , where T is the temperature in Kelvin.]

8. The heat capacities of the superconducting and normal phases of a metal
at low temperatures are given approximately by

Cs(T ) = V αT 3 superconducting phase

Cn(T ) = V βT 3 + V γT normal phase,

where V is the volume and α, β, and γ are constants. At low temperatures
the superconducting phase is stable while above a temperature Tc the normal
phase is stable.

Experiments indicate that the latent heat for the transition is zero. Find
an expression for Tc.

9. The partition function of a system is

Z = exp
[

aT 3V
]

,

where a is a positive constant. Obtain expressions for the Helmholtz free en-
ergy, the equation of state, the internal energy, the heat capacity at constant
volume, and the chemical potential.



Write the pressure as a function of the internal energy per unit volume.
Can you identify the physical system that corresponds to such a partition
function?

10. A crystalline solid contains N identical atoms on N lattice sites, and N
interstitial sites to which atoms may be transferred at the energy cost εc.
If n atoms are on interstitial sites, show that the configurational entropy is
2kB ln(N !/n! (N − n)!).

Assuming n/N is small, and that vacancies are very rare, show by min-
imising the total free energy that the equilibrium proportion of atoms on
interstitial sites n/N is

〈 n

N

〉

=
1

1 + exp(εc/2kBT )
.

11. A zipper has N links; each link has a state in which it is closed with
energy 0 and open with energy ǫ. We require, however, that the zipper can
only unzip from the left end, and that the link number s can only open if
all links to the left (1, 2, . . . , s− 1) are already open.
(a) Show that the partition function is

Z =
1− exp (−(N + 1)ǫ/kBT )

1− exp (−ǫ/kBT )
.

(b) Find the average number of open links in the low-temperature limit.
The model is a very simplified model of the unwinding of two-stranded
DNA molecules.
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1. Calculate the classical partition functions, and discuss the high- and low-
temperature limits of:
(a) a one-dimensional simple harmonic oscillator, for which

E(p, x) =
p2

2m
+

1

2
kx2 ;

(b) a particle moving in three dimensions in a uniform gravitational field,
for which

E(p, z) =
p2

2m
+mgz .

2. Consider an ideal classical gas of volume V and temperature T , consisting
of N indistinguishable particles in the extreme relativistic limit where the
energy ǫ and momentum p of a particle are related by ǫ = cp, where c is the
speed of light.
(a) Calculate the partition function of the system Z, the equation of state,
the entropy S, internal energy U , and the heat capacity CV .
(b) Suppose that, in addition to its translational motion, each of the particles
can exist in one of two states of energy ∆ and −∆. Calculate Z, the equation
of state, S, U , and CV .

3. Helium atoms of mass m may be adsorbed from the vapour phase at
pressure p onto a solid surface where they can move freely without interac-
tion, behaving as a two-dimensional perfect gas. If the adsorption energy is
∆, then by treating the vapour as a particle reservoir for the helium atoms
on the solid surface, and treating both sets of atoms as ideal classical gases,
show that the number density per unit area of helium atoms on the surface
is

nads =

(

p

kBT

)(

2πh̄2

mkBT

)1/2

exp

(

∆

kBT

)

.

4. A point defect in a solid may be occupied by 0, 1 (spin up or down)
or 2 electrons, and the solid provides a reservoir of electrons at chemical
potential µ. The energy for occupation by a single electron is ǫ, and that
for 2 electrons is 2ǫ+U , where U is the Coulomb repulsion energy between



the electrons. Obtain an expression for the average electron occupancy of
the defect.

5. Show that the equilibrium constant KN for the ionisation reaction He ⇀↽
He+ + e− is to a good approximation

KN =
1

4V

(

2πh̄2

mekBT

)3/2

eeφ/kBT

where φ is the first ionisation potential of He, which is 24.6 V.
Find the proportion of He that is ionised at 104 K (i) at atmospheric

pressure, and (ii) at 10−2 Nm−2. What is the cause of the change in the equi-
librium constant? This effect is important for spectral lines from interstellar
gases, one finds a surprisingly large intensity corresponding to spectral lines
of ionised atoms.

6. A system contains 2 particles, each of which can occupy either a level of
energy 0, or one of energy ǫ. Calculate the partition function of the system
if the particles obey:
(a) Fermi-Dirac statistics;
(b) Bose-Einstein statistics;
(c) Classical statistics and are indistinguishable;
(d) Classical statistics and are distinguishable.

In the high-temperature limit the partition functions for cases (a), (b),
and (c) tend to different values. Why is this?

7. The temperature at the centre of the sun is T = 1.6× 107 K, and plasma
at the centre of the sun consists of hydrogen at a density of ρH = 6× 104 kg
m−3 and helium at a density of ρHe = 1× 105 kg m−3.
(a) Calculate the thermal wavelengths of the electrons, protons and He nu-
clei.
(b) Determine whether the electrons, protons and He nuclei are degenerate
or non-degenerate under these conditions.
(c) Estimate the pressure at the centre of the sun due to these particles and
that due to the radiation pressure.
(d) Is it the pressure due to the particles or the radiation which prevents
gravitational collapse of the sun?

8. At temperatures below 0.4 K, a dilute solution of 3He in liquid 4He
behaves like a gas of 3He atoms moving freely in vacuo except that the
effective mass of each 3He atom is enhanced by a factor of about 2.4. The
concentration of 3He is 5 atomic percent and the density of the solution is
140 kg/m3. Sketch the temperature dependence of the heat capacity per



3He atom at low temperatures. Calculate the Fermi temperature, TF , and
the coefficient γ of the specific heat at low temperatures, cV = γT .
[Answer: TF = εF /kB = 0.33 K, γ = 2.0× 10−22 J atom−1K−2.]

9. Spin waves in many ferromagnets show a gap at low energy, due to
coupling of the orbital moments to the crystalline lattice. The resulting
dispersion relation curves are typically as shown below.

By first carrying out an approximate calculation sufficient to show the
qualitative temperature dependence of the internal energy U (or otherwise),
sketch the expected temperature dependence of the specific heat at low
temperatures, assuming that the dispersion relation is isotropic.

10. A long air-filled coaxial transmission line, of length L and small diam-
eter, is short circuited at each end. Show that, at room temperature and
at a cyclic frequency ν = 109Hz (ν = ω/2π), the mean energy of black
body radiation between the conductors in a small frequency range dω will
be approximately

kBT
L

πc
dω .

If the outer diameter is 1cm and the inner diameter 2mm, explain why it
would be reasonable at 1012Hz to replace this expression by one proportional
to

kBT
V

(2πc)3
ω2dω

where V is the volume between the conductors.

11. Write brief notes describing the chemical potential and examples of its
use in thermodynamics and statistical mechanics. In your essay, include a
sketch of µ as a function of the number of particles per unit volume in both
the classical and quantum regimes.
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1. The partition function of a system is

Z =
AN

N !
T 3N/2 V N exp

[

−B(T )N2

V

]

,

whereA is a positive constant andB(T ) is a function of temperature. Obtain
expressions for the Helmholtz free energy, the equation of state, the internal
energy, the heat capacity at constant volume, and the chemical potential.

What physical system corresponds to such a partition function?

2. An inter-molecular potential takes the form

φ(r) = ∞ r < a

−ǫ a < r < 2a

0 r > 2a.

Within the virial expansion the radial distribution function is expanded in
powers of the density.
(a) Sketch the form of the density-independent part of the radial distribu-
tion function versus r for kBT ≫ ǫ and kBT ≪ ǫ.
(b) Evaluate the 2nd virial coefficient, B2(T ), and the Boyle temperature of
the gas.
(c) Identify a set of reduced units, v∗0 and T ∗, for which B2(T

∗)/v∗0 is inde-
pendent of a and ǫ. Sketch B2(T

∗)/v∗0 versus T ∗.

3. The order parameter for a fluid of rod shaped molecules is their degree
of alignment, Q, with Q = 0 corresponding to a disordered fluid, and Q 6= 0
corresponding to a nematic liquid crystal. The free energy can be written
as

F (Q,T ) = a(T − Tc)Q
2 − bQ3 + cQ4,

where a, b, c and Tc are positive constants. This system shows a first order
phase transition, at a temperature T ∗, between two states with Q = 0 and
Q = Q∗.
(a) Calculate Q∗ and T ∗, using the conditions that the free energies of the
two states are equal at the transition and that the free energies are stationary



in equilibrium.
(b) Calculate the latent heat of the transition.

4. (i) Suppose the free energy of a system can be written as

F = α(T − Tc)P
2 + bP 4 + cP 6,

where c > 0. Show that the system can undergo a first order phase transition
at temperature T = Tc + b2/4ac if b < 0.

(ii) The free energy of a ferroelectric crystal can be written as

F = α(T − Tc)P
2 + bP 4 + cP 6 +DεP 2 + Eε2,

where P is the polarisation of the crystal and ε is the elastic strain. Show
that the crystal will undergo a first order phase transition when D2/4E > b.

5. Show that the fluctuations in particle number, N , at constant tempera-
ture, T , and volume, V , are given by

〈∆N2〉 = kBT

(

∂N

∂µ

)

T,V

.

6. For a system of N free electrons the statistical weight, Ω(U), is propor-
tional to exp[(NU/ǫ0)

1/2], where ǫ0 is about 10−19 J. Calculate the heat
capacity, C, of the system at room temperature. Show that the probabil-
ity distribution of the energy of the system is approximately Gaussian and
find the root mean square fractional energy fluctuation,

√

〈∆U2〉/〈U2〉, for
a system with N = 1023 at room temperature.
[Answer: C = 2.8×10−25 J K−1 per electron;

√

〈∆U2〉/〈U2〉 = 4.5×10−11.]

7. Find the mean square fluctuation of magnetisation, 〈∆M2〉, as a function
of temperature on both sides of the critical point Tc of the ferromagnetic
phase transition, which can be described by the Landau free energy expan-
sion

F = a(T − Tc)M
2 + bM4 .

8. Derive the Stokes-Einstein relationship for the diffusion constant of par-
ticles of radius R in a fluid of viscosity η

D =
kBT

6πηR
.



In 1928 Pospisil observed the Brownian motion of soot particles of radius
0.4×10−7 m immersed in a water-glycerine solution of viscosity 2.78×10−3

kg m−1 s−1, at a temperature of 292 K. The observed value of 〈x2〉 was
3.3×10−12 m2 in a 10-second interval. Use these data to determine a value
of the Boltzmann constant, kB , and compare it with the modern value.

9. The famous ratchet and pawl machine, originally suggested by Smolu-
chowski in 1912 to be able to extract useful work from a thermal reservoir
(against the Laws of Thermodynamics) is shown below. The pawl prevent-
ing the backward rotation of the wheel allows the energy transferred to the
flaps from the thermal motion of surrounding gas to be rectified, i.e. only
channelled in one direction.

If the energy required to lift the pawl and make one step of forward
motion is ε and the work against the external torque L (e.g. from the lifted
mass in the sketch) is Lθ, with θ the angle of single-step turn, show that
the system is reversible if

ε+ Lθ

T1

=
ε

T2

where T1 and T2 are the temperatures of the gas and the vanes, and of the
ratchet wheel, respectively. As a result, prove that the Carnot condition for
a reversible cycle holds, Q1/Q2 = T1/T2, where Q1 is the energy taken from
the vanes and Q2 the energy delivered to the wheel.

[see Feynman Lectures on Physics, chapter 46-2, for detail]

10. Consider free Brownian particles diffusing along the axis x ≥ 0, so that
there is a reflecting wall at x = 0. Also there is a “sink” at x = L where the
particles can escape from the system, so that the probability at that point
is P (L, t) = 0 at any time.

If the diffusion constant is D, estimate how long on average would it
take for all the particles to escape from the system?


