

Electric polarisation in materials Lecture 4

http://www.tcm.phy.cam.ac.uk/~bm418/

Bartomeu Monserrat Course B: Materials for Devices

non-polar

noncentrosymmetric crystal

non-polar

ferroelectric

piezoelectric

pyroelectric

Phase diagram of BaTiO₃

Landau theory

$\mathscr{F}(P,T) = a(T \cdot$

$$(-T_c)P^2 + bP^4 - EP$$

Ferroelectricity

Ferroelectricity: spontaneous polarisation that can be reversed by electric field

Dipole-dipole interaction

Polarisation domain

Domain: region in a material in which the polarisation is in the same direction ►

Stray field

Domain: region in a material in which the polarisation is in the same direction

Multiple domains

90° domain wall

180° domain wall

Energy balance

domain wall energy

stray field energy

VS.

VS.

Microscopic motion of domain walls

Domains in a single crystal

90° domain wall

180° domain wall

Domains in a polycrystal

Applications of ferroelectricity: the role of PZT

- PZT: $Pb(Zr_xTi_{1-x})O_3$ ►
- $x \simeq 0.5$: tetragonal-rhombohedral transition ►
- Can be polarised in 14 directions
- Versatile: used in many applications
- Disadvantage: lead is toxic

100 PbTiO₃

(x=0)

Applications of ferroelectricity: camera flash

- Switch polarisation using electric field Domain nucleation and growth About 50 ns

- - Apply field in direction of 0
 - If nothing happens: state is 0
 - If dipole switches: state is 1

Write to memory

Read from memory

If dipole has switched, need to take it back to 0

- High dielectric constant: sharper transitions between states High saturation/remanent polarisation: easy to measure Small coercive field: minimise energy required to switch (Not too small coercive field: don't want other fields to switch)

- High Curie temperature: resistant to environment changes

e.g. thin films of LiNbO₃, PbTiO₃, Pb(Zr_xTi_{1-x})O₃, SrBi₂Ta₂O₉

- Non-volatile (very stable)
- Low voltage
- Fast switching
- Radiation resistant
- - Low storage density
 - High cost
- Flash memories became the technology of choice FE-RAM are used in niche applications

Advantages:

Disadvantages:

Smart Watches

CT Scan

FUITSU FUJITSU SEMICONDUCTOR MEMORY SOLUTION

• Use case:

Real-time data logging of GPS information

• Why FeRAM?:

Low power consumption at writing, Fast write speed

• Use case:

Record of precise position information for scanning device, Storage of parameter information

• Why FeRAM?:

Non-volatility, 10 trillion read/write endurance, Fast write speed

ferroelectric

piezoelectric

pyroelectric