

http://www.tcm.phy.cam.ac.uk/~bm418/

Ionic conductors Lecture 8

Bartomeu Monserrat **Course B: Materials for Devices**

Ionic conduction

- Yttrium stabilised zirconia
- Complex structure (see Lecture 8)
- No conduction electrons (band gap)

$\sigma \sim 0.1 \ \mathrm{Sm}^{-1}$ $\sigma = 0.02 \text{ Sm}^{-1} (800 \,^{\circ}\text{C})$

- Copper (Cu): $\sigma = 6.0 \times 10^7 \text{ Sm}^{-1}$
- $Al_2O_3: \sigma = 10^{-10} \text{ Sm}^{-1}$

Fick's equation with drift current

 $j_x = -q$

- Continuum theory of ionic conduction
- Diffusion current caused by concentration gradients
- Drift current caused by applied field

$$qD\frac{\partial n}{\partial x} - \sigma\frac{\partial V}{\partial x}$$

Nernst-Einstein equation

- Steady state: diffusion and drift currents balance
- Mathematical relationship between conductivity σ and diffusivity D

 $\frac{\sigma}{D} = \frac{nq^2}{k_{\rm B}T}$

Defects in materials: point defects

Vacancy defects: one atom is missing

- Interstitial defects: one extra atom in the lattice
- Substitutional defect: replacing one atom by another atom
- Antisite defect: exchanging the positions of two atoms
- Topological defects: local changes in bonding...

Defects in materials anion A⁻ cation B⁺ • Ionic crystal: A^-B^+

Defects in materials: Schottky defect

- Ionic crystal: A⁻B⁺
- Stoichiometric defect:
 - One A⁻ vacancy
 - One B⁺ vacancy
- NaCl, cubic ZrO2

Defects in materials: Frenkel defect

- Ionic crystal: A⁻B⁺
- Stoichiometric defect:
 - One B⁺ vacancy
 - One B⁺ interstitial
- ZnS, AgCl

Site jump

Site jump

Arrhenius equation

$$D = D_0 e^{-\frac{E_B}{k_B T}}$$

- D: diffusivity $[m^2s^{-1}]$
- D_0 : pre-exponential factor $[m^2s^{-1}]$
- $E_{\rm B}$: energy barrier [J]
- $k_{\rm B}$: Boltzmann constant $[1.38 \times 10^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}]$
- T: temperature [K]

Arrhenius equation

$$D = D_0 e^{-\frac{E_{\rm B}}{k_{\rm B}T}}$$

$$D_0 \sim a^2 \Gamma$$

 D_0 : pre-exponential factor [m²s⁻¹]

a: jump distance [m]

 Γ : jump rate [s⁻¹]

Arrhenius plots

See derivation Arrhenius relation

$$\sigma_0 - \left(\frac{E_{\rm B}}{k_{\rm B}}\right) \frac{1}{T}$$

$$\sigma_0 = \frac{D_0 n_0 q^2}{k_{\rm B} T}$$

Arrhenius plots

$$\sigma_0 = \frac{D_0 n_0 q^2}{k_{\rm B} T}$$

21

Zr

- Zr sublattice is fcc
- 8 tetrahedral interstices occupied by O
- Fluorite structure (Course A)

tetrahedral interstice

Charge balance:

 $8 \times (-2) + 4 \times (+4) = -16 + 16 = 0$

Phase diagram of ZrO₂

monoclinic

$$a \neq b \neq c$$

$$\alpha = \beta = 90^{\circ} \neq \gamma$$

tetragonal

$$a = b \neq c$$
$$= \beta = \gamma = 90^{\circ}$$

α

2360

Yttrium oxide Y₂O₃ (yttria)

- Cubic structure
- 24 O equivalent sites
- 16 Y sites:
 - 4 are 6-fold coordinated with equal bond lengths
 - 12 are 6-fold coordinated with unequal bond lengths (3 pairs)

- Add yttria to zirconia
- Cubic fluorite structure
- Room temperature

- Lost positive charge: +1
- Lost negative charge: 0

- Lost positive charge: +1
- Lost negative charge: -2

- Lost positive charge: +2
- Lost negative charge: -2

For every 2 Zr^{4+} ions we replace by 2 Y^{3+} ions, we create an oxygen O^{2-} vacancy

- Yttria-stabilised zirconia
- Oxygen vacancies mediate ionic conduction

δ -Bi₂O₃

- Bi sublattice is fcc
- 8 tetrahedral interstices
- 6 tetrahedral interstices occupied by O
- Fluorite structure (Course A)

δ -Bi₂O₃

Charge balance:

$6 \times (-2) + 4 \times (+3) = -12 + 12 = 0$

δ -Bi₂O₃: competing models

- Ideal tetrahedral sites
- 6/8 tetrahedral interstices occupied

- Sites available that are displaced from ideal tetrahedral sites
- Different distorted sites have different occupation probabilities

δ -Bi₂O₃

- δ -Bi₂O₃
- Average of 6/8 oxygens per cell
- Oxygen vacancies mediate ionic conduction

Phase diagram of Bi₂O₃: heating

monoclinic (α -Bi₂O₃)

$$a \neq b \neq c$$
$$\alpha = \beta = 90^{\circ} \neq \gamma$$

-273

cubic (δ -Bi₂O₃) a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

729

Phase diagram of Bi₂O₃: cooling

cubic (δ -Bi₂O₃)

Phase diagram of Bi₂O₃: cooling

