

[●] http://www.tcm.phy.cam.ac.uk/~bm418/

Ionic conductors Lecture 9

Bartomeu Monserrat Course B: Materials for Devices

Ionic motion in crystals

Site jump

Yttria-stabilised zirconia (YSZ)

- ‣ Yttria-stabilised zirconia
- ‣ Oxygen vacancies mediate ionic conduction

*δ***-Bi2O3**

- \cdot δ -Bi₂O₃
- ‣ Average of 6/8 oxygens per cell
- ‣ Oxygen vacancies mediate ionic conduction

Oxygen sensors

- Electrolyte: conducting through ionic motion but not through electron motion (e.g. YSZ) ‣ Anode: electrical conductor through which current enters the device (e.g. Pt) ‣ Cathode: electrical conductor through which current leaves the device (e.g. Pt)
-
-

- ‣ Reference sample: known partial pressure of oxygen
- ‣ Test sample: unknown partial pressure of oxygen

‣ Pt electrodes are porous to let gas through

Pt(s) | O2(g) (I) | YSZ | O2(g) (II) | Pt(s)

Pt(s) | O2(g) (I) | YSZ | O2(g) (II) | Pt(s)

 $pO_{2}(g)$ (1) < $pO_{2}(g)$ (11):

Pt(s) | O2(g) (I) | YSZ | O2(g) (II) | Pt(s)

 $pO_2(g)$ (1) < $pO_2(g)$ (II):

- RHS: $O_2(g)$ (II) + 4e⁻ → 20²⁻ reduction (cathode)
- \cdot LHS: 20^{2−} → O₂(g) (I) + 4e⁻ oxidation (anode)

Pt(s) | O2(g) (I) | YSZ | O2(g) (II) | Pt(s)

 $pO_2(g)$ (1) < $pO_2(g)$ (II):

- RHS: $O_2(g)$ (II) + 4e⁻ → 20²⁻ reduction (cathode)
- \cdot LHS: 20^{2−} → O₂(g) (I) + 4e⁻ oxidation (anode)

$$
E = -\frac{RT}{4F} \ln \left(\frac{pO_2(I)}{pO_2(II)} \right)
$$

- *E* : electrochemical cell potential [V]
- $R:$ gas constant $[8.314 \text{ J K}^{-1} \text{mol}^{-1}]$
- *T* : temperature [K]
- *F* : Faraday constant $[9.649 \times 10^4 \text{ C mol}^{-1}]$

$$
E = -\frac{RT}{4F} \ln \left(\frac{pO_2(I)}{pO_2(II)} \right)
$$

\cdot If $pO_2(I) < pO_2(II)$: $E > 0$ O^{2−}: (II) → (I) \cdot If $pO_2(I) > pO_2(II)$: *E* < 0 0^{2−}: (I)→(II)

Oxygen sensor

- ‣ Measure oxygen levels in air for safety
- ‣ Lambda sensor used in vehicle exhaust system

Credit: George McCaa, U.S. Bureau of Mines

‣ Reference gas and exhaust (test) gas

- ‣ Reference gas and exhaust (test) gas
- ‣ YSZ electrolyte in the middle

- ‣ Reference gas and exhaust (test) gas
- ‣ YSZ electrolyte in the middle
- ‣ Permeable Pt electrodes

- ‣ Reference gas and exhaust (test) gas
- ‣ YSZ electrolyte in the middle
- ‣ Permeable Pt electrodes
- ‣ Heater to promote ionic conductivity in YSZ

- ‣ Measures difference between exhaust and atmosphere oxygen partial pressures
- ‣ Linked to fuel injection system to control air/fuel ratio
- ‣ Aim to achieve complete stoichiometric conversion of fuel to minimise emissions:

‣ Non-stoichiometric conversion leads to CO, NO_{X_2} ...

$$
C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O
$$

$$
C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O
$$

‣ From relative molecular masses (remembering air is about $4N_2$: O_2), we get stoichiometric combustion when air-to-fuel ratio by weight is 14.6:

$$
\lambda = \frac{\text{measured ratio}}{14.6}
$$

 \rightarrow Aim for $\lambda = 1$

cell potential (V) cell potential (V)

oxygen partial pressure (atm) (atm) pressure Dartial oxygen

Fuel rich (burn all oxygen):

oxygen partial pressure (atm) (atm) pressure Jairtial oxygen

- ‣ Low oxygen pressure in exhaust
-

Lean burn (too little fuel):

oxygen partial pressure (atm) (atm) pressure Idition oxygen

- ‣ High oxygen pressure in exhaust
-

Oxygen pump

molten metal

- ‣ Aim to purify molten metal
- ‣ Apply external potential to drive oxygen ions from the molten metal to the metal oxide mixture
- ‣ Driving ions from region of low concentration to region of high concentration

- ‣ Aim to purify molten metal
- ‣ Apply external potential to drive oxygen ions from the molten metal to the metal oxide mixture
- ‣ Driving ions from region of low concentration to region of high concentration

burn fuel (react CH4 with O2)

‣ Gas-fired power station:

chemical energy

gas steam spin turbine electricity generator

thermal energy

electrical energy

burn fuel (react CH_4 with O_2)

‣ Gas-fired power station:

chemical energy

gas steam spin turbine electricity generator

thermal energy

mechanical energy

electrical energy

‣ Fuel cell:

chemical energy

-
- ‣ Anode: porous electrical conductor
- ‣ Cathode: porous conducting material resistant to oxidation

• Electrolyte: conducting through ionic motion but not through electron motion (e.g. YSZ)

reduction (cathode)

oxidation (anode)

reduction (cathode)

oxidation (anode)

H_2 fuel charge CH₄ fuel anode $| H_2(g) | YSZ | O_2(g) |$ cathode anode $| CH_4(g) | YSZ | O_2(g) |$ cathode

‣ Overall cell reactions:

‣ Half cell reactions:

$$
O_2 + 4e^- \longrightarrow 2O^{2-}
$$

 $2H_2 + 2O^2$ ⁻ → $2H_2O + 4e^-$

$2H_2 + O_2 \longrightarrow 2H_2O$ CH₄ + $2O_2 \longrightarrow CO_2 + 2H_2O$

 $2O_2 + 8e^ \longrightarrow$ 40²⁻

 $CH_4 + 40^{2-} \longrightarrow CO_2 + 2H_2O + 8e^-$

polymer electrolyte membrane

yttria-stabilised zirconia electrolyte

- ‣ Polymer electrolyte membrane:
	- Thin and flexible polymer membranes (see Lecture 10)
	- Operate at about 80 °C (cf. YSZ operates at 600-1,000 °C)
	- Conduct protons H +

°C (cf VSZ onerates at 600-1 000 °

anode $| H_2(g) | YSZ | O_2(g) |$ cathode anode $| H_2(g) |$ PEM $| O_2(g) |$ cathode

‣ Overall cell reactions:

$2H_2 + O_2 \longrightarrow 2H_2O$ 2H₂ + $O_2 \longrightarrow 2H_2O$

‣ Half cell reactions:

$$
O_2 + 4e^- \longrightarrow 2O^{2-}
$$

 $2H_2 + 2O^2$ ⁻ → $2H_2O + 4e^-$

YSZ electrolyte **polymer** electrolyte membrane

 $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ $2H_2 \longrightarrow 4H^+ + 4e^-$

‣ Advantages:

- Direct conversion: about twice as efficient as internal combustion engine
- No polluting emissions if fuel is H_2
- No noise (no mechanical parts)

‣ Material challenges:

-
- Chemically resistant (harsh oxidation and reduction chemical environments)

Matched or low thermal expansion coefficient (high operating temperature)

‣ Disadvantages:

- Hydrogen storage is energy intensive (compress or liquify gas)
- Hydrogen is extremely flammable

Hydrogen economy

hydrogen generation

$2H_2O \longrightarrow 2H_2 + O_2$

Hydrogen economy: challenges

hydrogen

generation

‣ Hydrogen generation:

- Splitting water requires energy (electrolysis of water)
- For this to be sustainable, the energy source would ideally be solar energy
- Unsolved problem

Hydrogen economy: challenges

hydrogen

generation

‣ Hydrogen storage:

- Compressed or liquified gas very energy intensive
- Hydrogen is highly flammable
- Possible solution: using porous materials (e.g. metal-organic frameworks)