

http://www.tcm.phy.cam.ac.uk/~bm418/

Ionic conductors Lecture 9

Bartomeu Monserrat **Course B: Materials for Devices**

lonic motion in crystals

Site jump

Yttria-stabilised zirconia (YSZ)

- Yttria-stabilised zirconia
- Oxygen vacancies mediate ionic conduction

δ -Bi₂O₃

- δ -Bi₂O₃
- Average of 6/8 oxygens per cell
- Oxygen vacancies mediate ionic conduction

Oxygen sensors

- Electrolyte: conducting through ionic motion but not through electron motion (e.g. YSZ) ► Anode: electrical conductor through which current enters the device (e.g. Pt) Cathode: electrical conductor through which current leaves the device (e.g. Pt)

- Reference sample: known partial pressure of oxygen
- Test sample: unknown partial pressure of oxygen

Pt electrodes are porous to let gas through

$Pt(s) | O_2(g) (I) | YSZ | O_2(g) (II) | Pt(s)$

$Pt(s) | O_2(g) (I) | YSZ | O_2(g) (II) | Pt(s)$

 $pO_2(g)(I) < pO_2(g)(II)$:

 $pO_2(g)(I) < pO_2(g)(II)$:

- RHS: $O_2(g)(II) + 4e^- \longrightarrow 20^{2-}$
- LHS: $20^{2-} \rightarrow O_2(g)(I) + 4e^{-1}$

$Pt(s) | O_2(g) (I) | YSZ | O_2(g) (II) | Pt(s)$

reduction (cathode) oxidation (anode)

$Pt(s) | O_2(g) (I) | YSZ | O_2(g) (II) | Pt(s)$

 $pO_2(g)(I) < pO_2(g)(II)$:

- RHS: $O_2(g)(II) + 4e^- \longrightarrow 20^{2-}$
- LHS: $20^{2-} \rightarrow O_2(g)(I) + 4e^{-1}$

reduction (cathode) oxidation (anode)

$$E = -\frac{RT}{4F} \ln\left(\frac{pO_2(I)}{pO_2(II)}\right)$$

- *E* : electrochemical cell potential [V]
- $R: gas constant [8.314 J K^{-1} mol^{-1}]$
- T: temperature [K]
- F: Faraday constant $[9.649 \times 10^4 \,\mathrm{C}\,\mathrm{mol}^{-1}]$

$$E = -\frac{RT}{4F} \ln\left(\frac{pO_2(I)}{pO_2(II)}\right)$$

If $pO_2(I) < pO_2(II)$: E > 0 O^{2−}: (II)→(I) If $pO_2(I) > pO_2(II)$: E < 0 O^{2−}: (I)→(II)

Oxygen sensor

- Measure oxygen levels in air for safety
- Lambda sensor used in vehicle exhaust system

Credit: George McCaa, U.S. Bureau of Mines

Reference gas and exhaust (test) gas

- Reference gas and exhaust (test) gas
- YSZ electrolyte in the middle

- Reference gas and exhaust (test) gas
- YSZ electrolyte in the middle
- Permeable Pt electrodes

- Reference gas and exhaust (test) gas
- YSZ electrolyte in the middle
- Permeable Pt electrodes
- Heater to promote ionic conductivity in YSZ ►

- Measures difference between exhaust and atmosphere oxygen partial pressures
- Linked to fuel injection system to control air/fuel ratio
- Aim to achieve complete stoichiometric conversion of fuel to minimise emissions:

$$C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$$

 Non-stoichiometric conversion leads to CO, NO_x, ...

$$C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$$

 From relative molecular masses (remembering air is about 4N₂:O₂), we get stoichiometric combustion when air-to-fuel ratio by weight is 14.6:

$$\lambda = \frac{\text{measured ratio}}{14.6}$$

• Aim for $\lambda = 1$

cell potential (V)

(atm) pressure partial oxygen

Fuel rich (burn all oxygen):

- Low oxygen pressure in exhaust
- High cell potential

(atm) pressure partial oxygen

Lean burn (too little fuel):

- High oxygen pressure in exhaust
- Low cell potential

(atm) pressure partial oxygen

Oxygen pump

molten metal

- Aim to purify molten metal
- Apply external potential to drive oxygen ions from the molten metal to the metal oxide mixture
- Driving ions from region of low concentration to region of high concentration

- Aim to purify molten metal
- Apply external potential to drive oxygen ions from the molten metal to the metal oxide mixture
- Driving ions from region of low concentration to region of high concentration

Gas-fired power station:

chemical energy

thermal energy

burn fuel (react CH₄ with O₂)

gas steam

electrical energy

electricity generator

spin turbine

Gas-fired power station:

chemical energy

thermal energy

burn fuel (react CH₄ with O₂)

gas steam

Fuel cell:

chemical energy

electrical energy

electricity generator

mechanical energy

spin turbine

- Anode: porous electrical conductor
- Cathode: porous conducting material resistant to oxidation

Electrolyte: conducting through ionic motion but not through electron motion (e.g. YSZ)

reduction (cathode)

 $0 + 4e^{-}$ oxidation (anode)

reduction (cathode)

+ 8e⁻ oxidation (anode)

H₂ fuel anode $|H_2(g)|YSZ|O_2(g)|$ cathode

• Overall cell reactions:

$2H_2 + O_2 \longrightarrow 2H_2O$

Half cell reactions:

$$O_2 + 4e^- \longrightarrow 20^{2-}$$

 $2H_2 + 2O^{2-} \longrightarrow 2H_2O + 4e^{-}$

CH₄ fuel anode $|CH_4(g)|YSZ|O_2(g)|$ cathode

$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O_2$

$20_2 + 8e^- \longrightarrow 40^{2-}$

 $CH_4 + 4O^{2-} \longrightarrow CO_2 + 2H_2O + 8e^{-1}$

yttria-stabilised zirconia electrolyte

polymer electrolyte membrane

- Polymer electrolyte membrane:
 - Thin and flexible polymer membranes (see Lecture 10)
 - Operate at about 80 °C (cf. YSZ operates at 600-1,000 °C)
 - Conduct protons H⁺

s (see Lecture 10) es at 600-1,000 °C)

YSZ electrolyte anode $|H_2(g)|YSZ|O_2(g)|$ cathode

• Overall cell reactions:

$2H_2 + O_2 \longrightarrow 2H_2O$

Half cell reactions:

$$O_2 + 4e^- \longrightarrow 20^{2-}$$

 $2H_2 + 2O^{2-} \longrightarrow 2H_2O + 4e^{-}$

polymer electrolyte membrane anode $|H_2(g)|$ PEM $|O_2(g)|$ cathode

$2H_2 + O_2 \longrightarrow 2H_2O$

 $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ $2H_2 \longrightarrow 4H^+ + 4e^-$

Advantages:

- Direct conversion: about twice as efficient as internal combustion engine
- No polluting emissions if fuel is H₂
- No noise (no mechanical parts)

Disadvantages:

- Hydrogen storage is energy intensive (compress or liquify gas) ----
- Hydrogen is extremely flammable

Material challenges:

- Chemically resistant (harsh oxidation and reduction chemical environments)

Matched or low thermal expansion coefficient (high operating temperature)

Hydrogen economy

hydrogen generation

$2H_2O \longrightarrow 2H_2 + O_2$

Hydrogen economy: challenges

Hydrogen generation:

- Splitting water requires energy (electrolysis of water)
- For this to be sustainable, the energy source would ideally be solar energy
- Unsolved problem

hydrogen

generation

olysis of water) source would ideally be solar energy

Hydrogen economy: challenges

Hydrogen storage:

- Compressed or liquified gas very energy intensive
- Hydrogen is highly flammable
- Possible solution: using porous materials (e.g. metal-organic frameworks)

hydrogen

generation