

intellegens

Innovative machine learning for simulations, experiments, and beyond

Ansys 2021

Confidential

intellegens.ai

Alchemite™ machine learning

Alchemite[™] developed at University of Cambridge and Intellegens

Design formulations for multiple target properties

Merge simulations, physical laws, and experimental data to exploit all available information

Exploit **Uncertainties** to deliver most robust predictions to customers

Accelerate formulation design at reduced cost

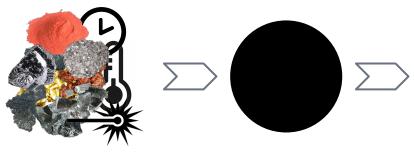
Handling sparse data

Approach problems with a black box

Formulation

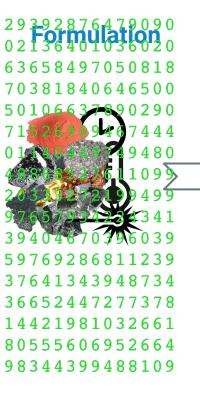
Black box

Properties



Defects Strength Cost Weight Fatigue Environment

Train the machine learning



Black box

Confidential

Use the machine learning

Formulation

Black box

Properties

Defects Strength Cost Weight Fatigue Environment

Sparse data

Formulation

Black box

Properties

Defects

Strength Cost Weight Fatigue Environment

Exploit imputed first principles simulations



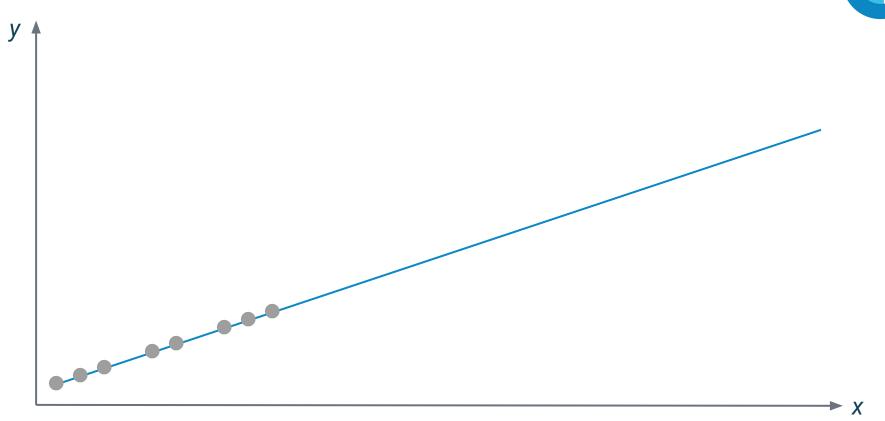
Use of uncertainty

Training data

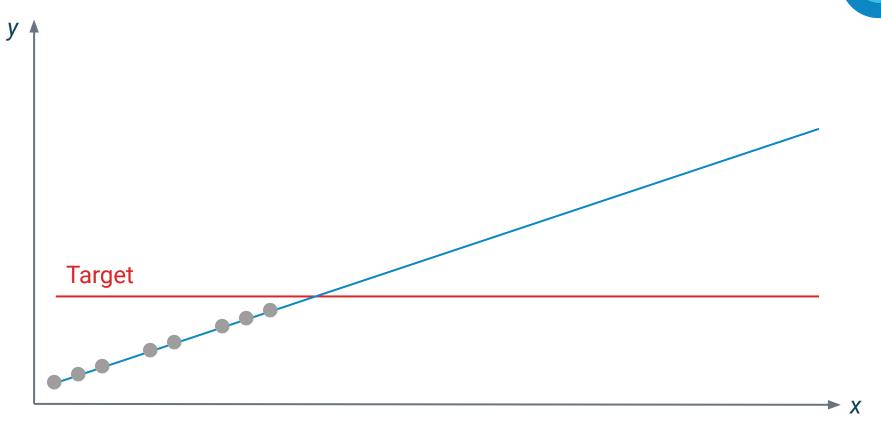
У

► X

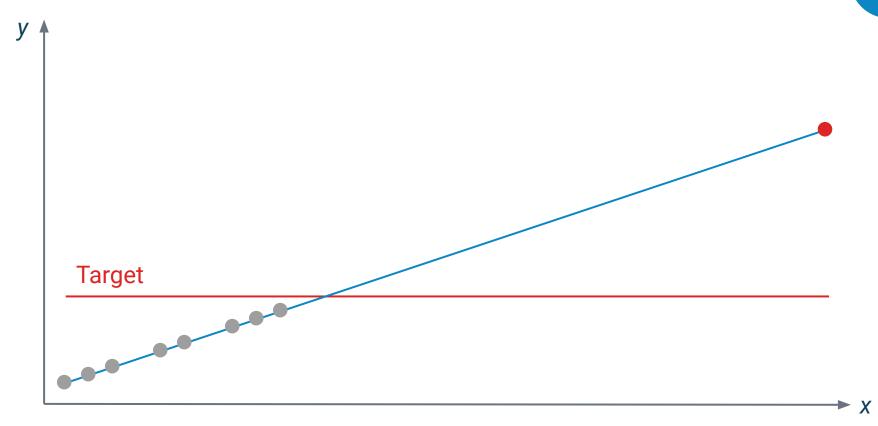
Machine learning model

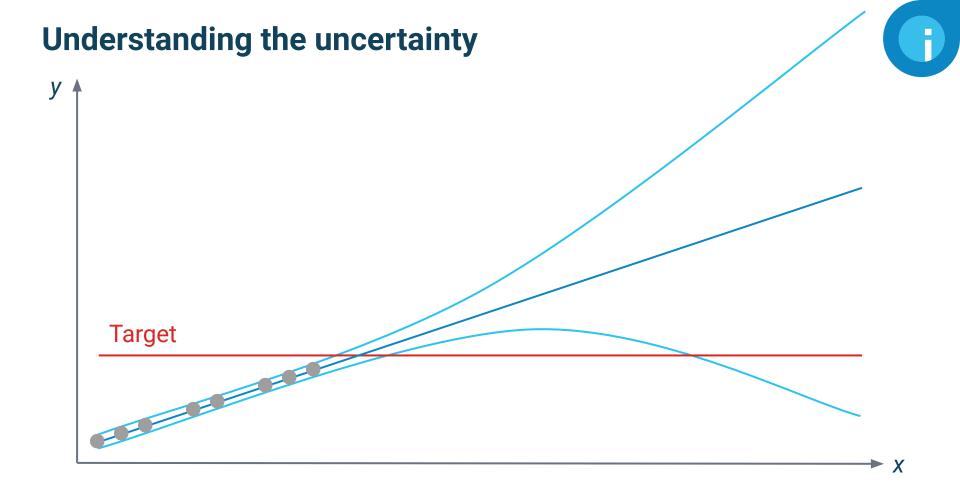


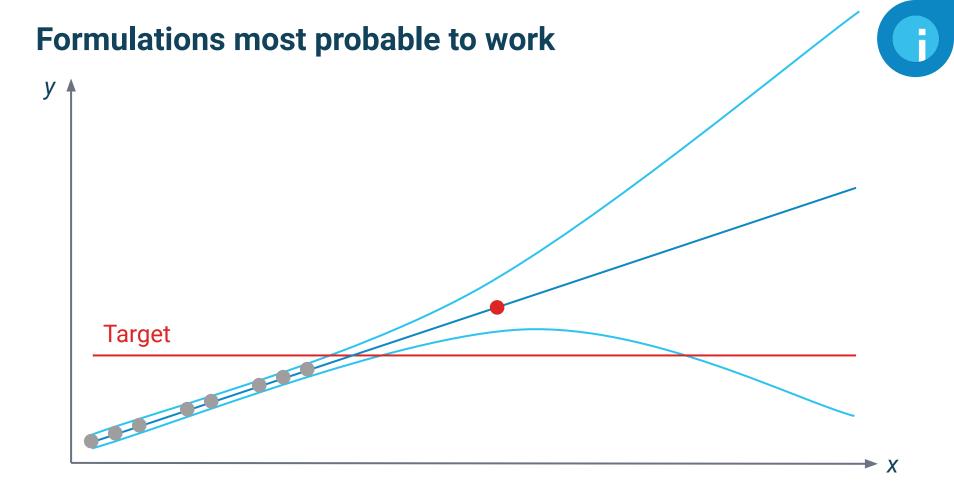
Target for the design



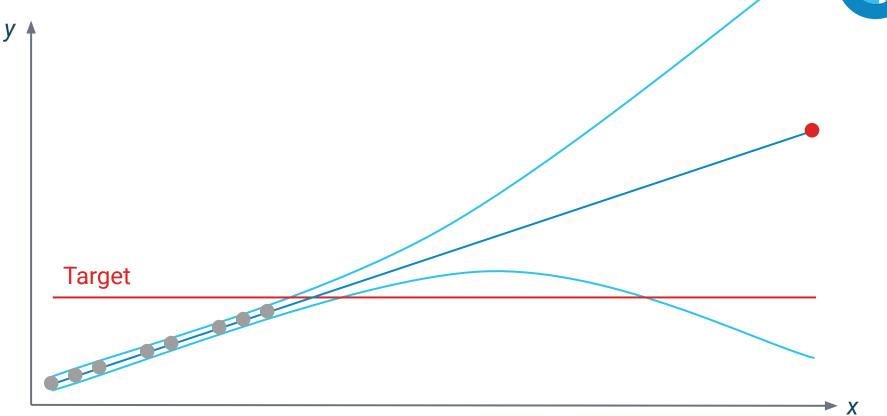
Choose the formulation with best expected property







Design of experiment



Alchemite[™] technology offers a unique combination

C.

Value from sparse, noisy data

Unique self-consistent, iterative algorithm imputes sparse data

Quantify uncertainty to enable rational decisions

Accurate method (nonparametric probability distributions)

Optimise against multiple targets

Solves high-dimensional problems that were intractable

Make a fast start

Auto-generates models, requiring minimal assumptions

► ↗ ∠ ∠Speed and scalability

Light CPU / memory footprint: replace first principles simulations and handle huge datasets

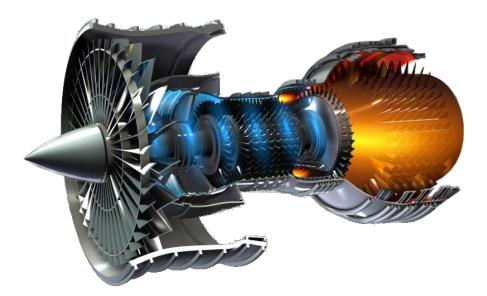
e.g., ingredients *and* processing parameters in a combined study

Case studies

Confidential

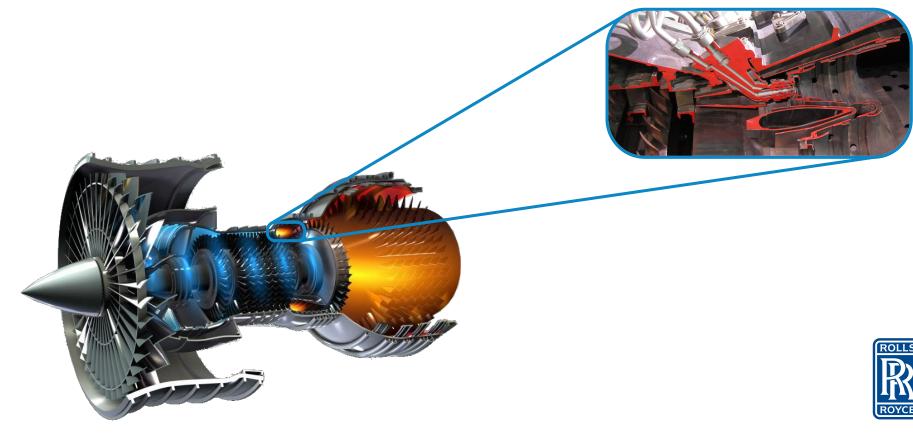
intellegens.ai

Schematic of a gas turbine engine



F

Combustor in a gas turbine engine



Target properties

Elemental cost

Density

γ' content

Oxidation resistance

Processability

Phase stability

γ' solvus

Thermal resistance

Yield stress at 900°C

Tensile strength at 900°C

Tensile elongation at 700°C 1000hr stress rupture at 800°C

Fatigue life at 500 MPa, 700°C

< 25 \$kg⁻¹

< 8500 kgm⁻³

< 25 wt%

< 0.3 mgcm⁻²

< 0.15% defects

> 99.0 wt%

> 1000°C

> 0.04 KΩ⁻¹m⁻³

> 200 MPa

> 300 MPa

> 8%

> 100 MPa

> 10⁵ cycles

Processability had just 8 entries available

Elemental cost

Density

γ' content

Oxidation resistance

Processability

Phase stability

γ' solvus

Thermal resistance

Yield stress at 900°C

Tensile strength at 900°C

Tensile elongation at 700°C

1000hr stress rupture at 800°C

Fatigue life at 500 MPa, 700°C

- < 25 \$kg⁻¹
- < 8500 kgm⁻³
- < 25 wt%
- < 0.3 mgcm⁻²
- < 0.15% defects
- > 99.0 wt%
- > 1000°C
- > 0.04 KΩ⁻¹m⁻³
- > 200 MPa
- > 300 MPa
- > 8%
- > 100 MPa
- $> 10^5$ cycles

Properties from first principles methods

Elemental cost

Density

γ' content

Oxidation resistance

Processability

Phase stability

γ' solvus

Thermal resistance

Yield stress at 900°C

Tensile strength at 900°C Tensile elongation at 700°C

1000hr stress rupture at 800°C

Fatigue life at 500 MPa, 700°C

< 25 \$kg⁻¹

< 8500 kgm⁻³

< 25 wt%

< 0.3 mgcm⁻²

< 0.15% defects

> 99.0 wt%

> 1000°C

> 0.04 KΩ⁻¹m⁻³

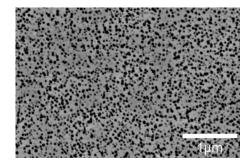
> 200 MPa

> 300 MPa

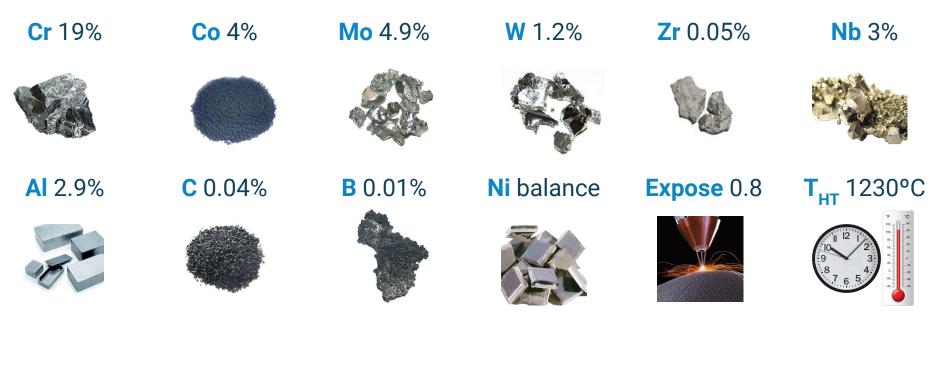
> 8%

> 100 MPa

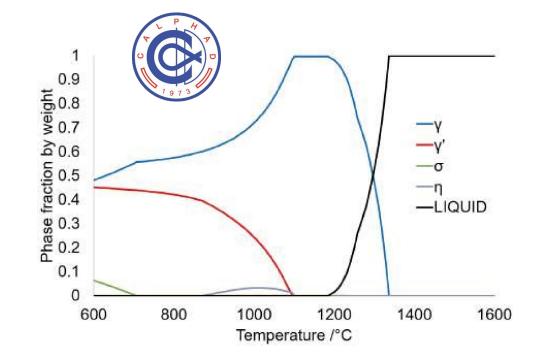
> 10⁵ cycles



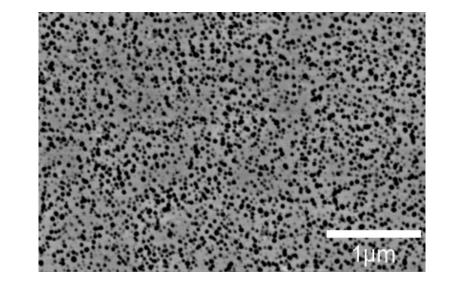
Composition and design parameters



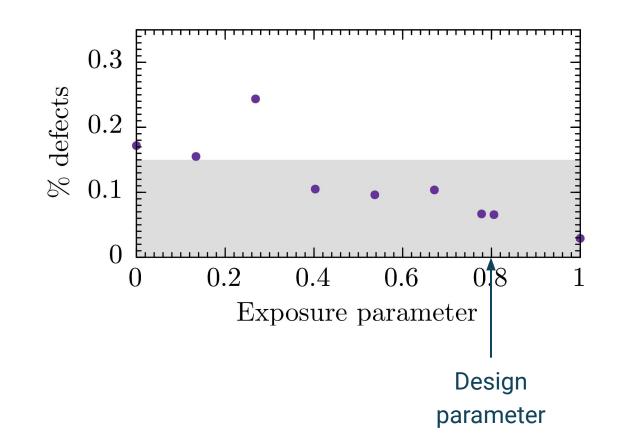
Phase behavior

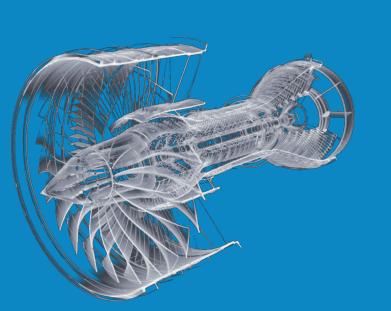


Microstructure



Defects





Materials & Design 168, 107644 (2019)

High temperature alloy

Validated a new alloy for 20+ composition/process parameters to satisfy 11 physical criteria

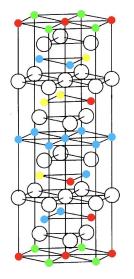
Just 8 printability experimental values

90% fewer costly experiments

Reduced costs by \$10 million

Accelerated typical discovery and validation time from 20 to 2 years

Battery cathode NCM material



Nickel

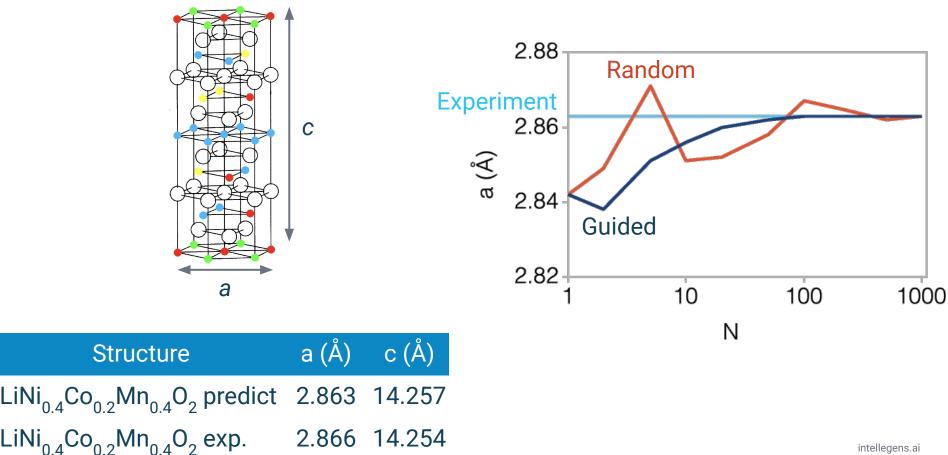
- Cadmium
- Manganese
- Oxygen
- Lithium

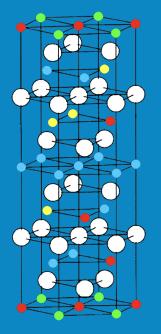
Design a NCM cathode that is more robust against Li migration and maintains other properties

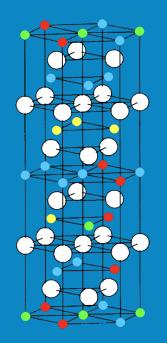
Lattice constants

С а

How many simulations are required?







Original 82% robust

Proposed 100% robust

Battery cathodes

 $\begin{array}{l} \text{Machine learning required } 20x \text{ fewer} \\ \text{density functional theory calculations} \end{array}$

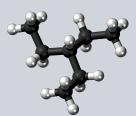
Reduce Li migration to improve battery life

Maintain voltage, charge stored, density, and cost

Bespoke battery design for each customer

Heat exchanger & shape memory alloy applications

REVIEW ARTICLE nttps://doi.org/10.1038/s42256-020-0156



Check for update Predicting the state of charge and health of batteries using data-driven machine learning

Man-Fai Ng¹, Jin Zhao², Qingyu Yan²⊠, Gareth J. Conduit³⊠ and Zhi Wei Seh©⁴⊠

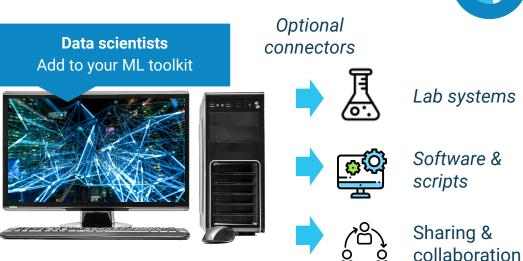
Machine learning is a specific application of artificial intelligence that allows computers to learn and improve from data and experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning has recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining useful fe of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: the

Battery management software Nature Machine Intelligence 2, 161 (2020)

Alchemite[™] product family

Scientists & engineers Fast start, easy-to-use, visual

Option to deploy models



Alchemite[™] Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimise

Alchemite[™] Engine

Integrate into your workflow (API, Python) Advanced configuration, enterprise deployment

Alchemite™ Success Access Intellegens deep learning expertise Advice to your data science team or full project management

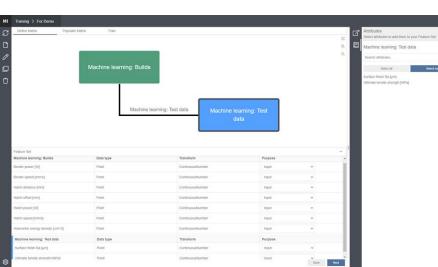
Intellegens and Ansys

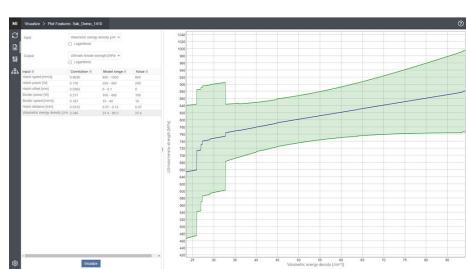
Granta MI[™] plus Alchemite[™]

Al Optimize > Sak_Demo_1410							
🔊 Sak Demo_1410 : Probability 86.07% 🖉						Visualize: Plot features Visualize: View outputs	
Table 8	Feature 0	∇ Constraint	∀ Goal 8		∀ Uncertainty \$		7
 Inputs (7) 							
 Machine lear 	ming: (7)						
	Hatch speed [mm/s]	Full range 800 - 1500		1140		800 - 1500	
	Hatch power [W]	Full range 200 - 400		294		200 - 400	
	Hatch offset (mm)	Full range 0 - 0.1		0.052		0 - 0.1	
	Border power [W]	Full range 100 - 400		265		100 - 400	
	Border speed [mm/s]	Full range 10 - 40		24.3		10 - 40	
	Hatch distance [mm]	Full range 0.07 - 0.12		0.0961		0.07 - 0.12	
	Volumetric energy density [J/m*3]	Full range 23.4 - 89.3		44.8		23.4 - 89.3	
 Outputs (2) 							
 Machine lea 	ming: (2)						
	Ultimate tensile strength [MPa]		Greater than 299	803	26.1	299 - 916	
	Surface finish Ra [um]		Less than 14.8	9.03	0.286	4.74 - 14.8	

2

12





R

Sparse data, uncertainty & simulations

Alchemite[™] uses property-property correlations, uncertainty estimates, and first principles simulations to overcome sparse data

Designed experimentally verified materials with impossibly small data

Connect with **first principles** simulations including: CALPHAD Density functional theory Finite element Computational fluid dynamics Molecular dynamics

Next steps

- Contact gareth@intellegens.ai
- Website https://intellegens.ai
- Papers https://intellegens.ai/article-type/papers/
- Demo https://app.intellegens.ai

@intellegensai

/company/intellegensai

