

intellegens

Applied machine learning

Unveil the unseen: uncover hidden information with machine learning

Dr Gareth Conduit

Introducing Alchemite[™] applied machine learning

Developed at University of Cambridge

Innovative method extracts value from **Sparse**, **noisy data** to solve complex, high-dimensional problems

Key use cases: chemicals, materials, life sciences, and manufacturing

Focus on ease-of-deployment for immediate return on investment

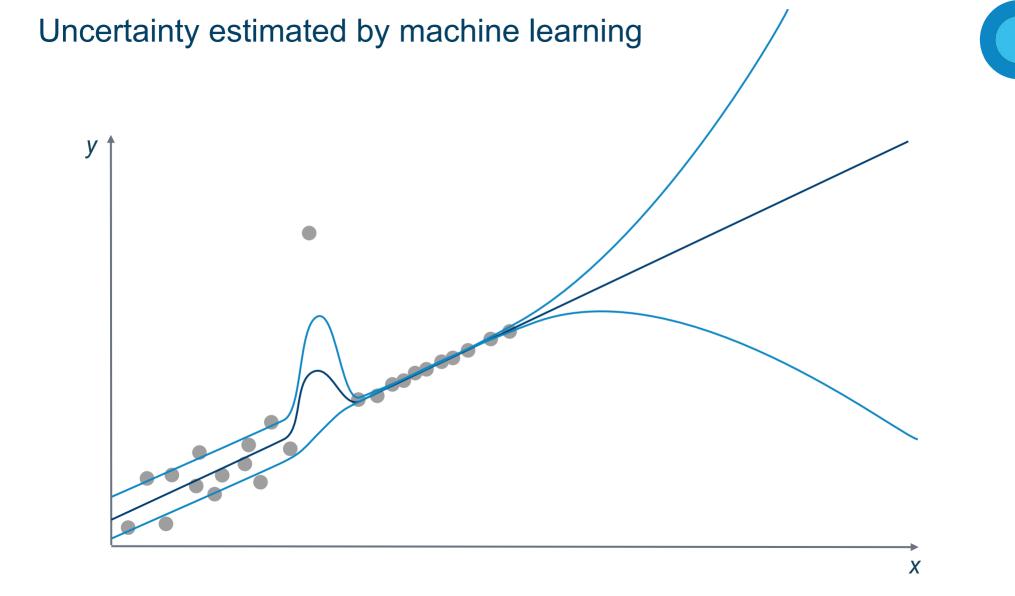
Exploit property-property correlations to overcome sparse data for probabalistic design of concrete

Use case of machine learning to extract information from noise to design concrete

Applications of generic Alchemite™ to materials design

Machine learning architecture that understands uncertainty

Bogdan Zviazhynski



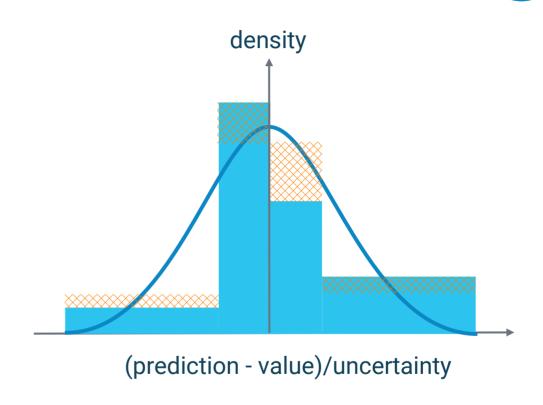
Improved uncertainty predictions

$$R^2 - \frac{2\sqrt{2}}{\sqrt{1-2/\pi}} (1-R^2) \Lambda$$

 R^2 is coefficient of determination

∧ is error in uncertainties

Focus on R² for accurate models, emphasis on uncertainties when accuracy falls



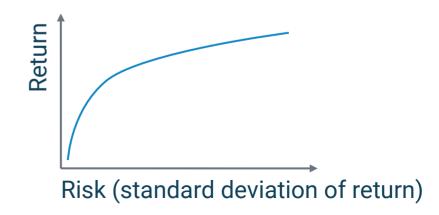
Exemplar information extracted from noise

Renormalization group theory

applied to phase transitions 1982 Nobel Prize in Physics

Markowitz model

1990 Nobel Memorial Prize



Handling uncertainty

Discover property-property correlations

Design robust formulations

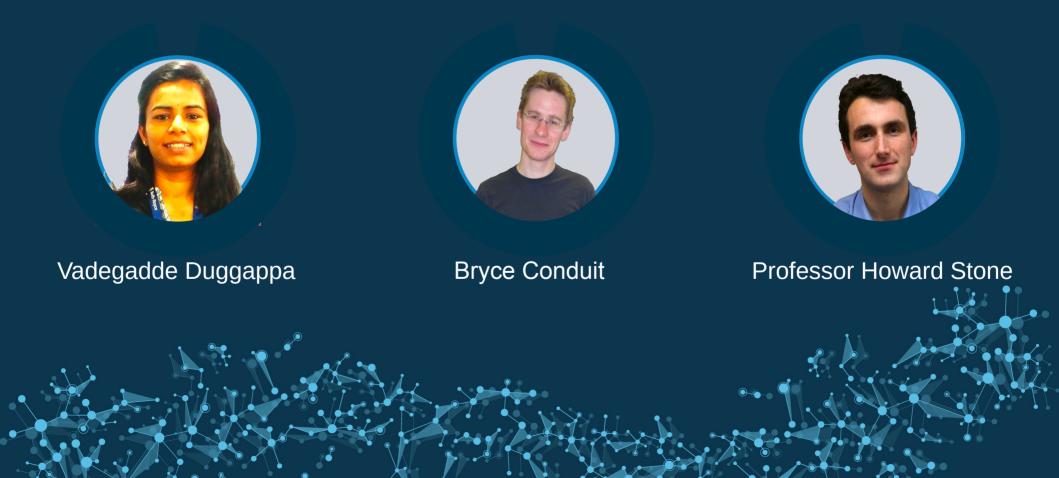
Outlier detection

Design of experiments

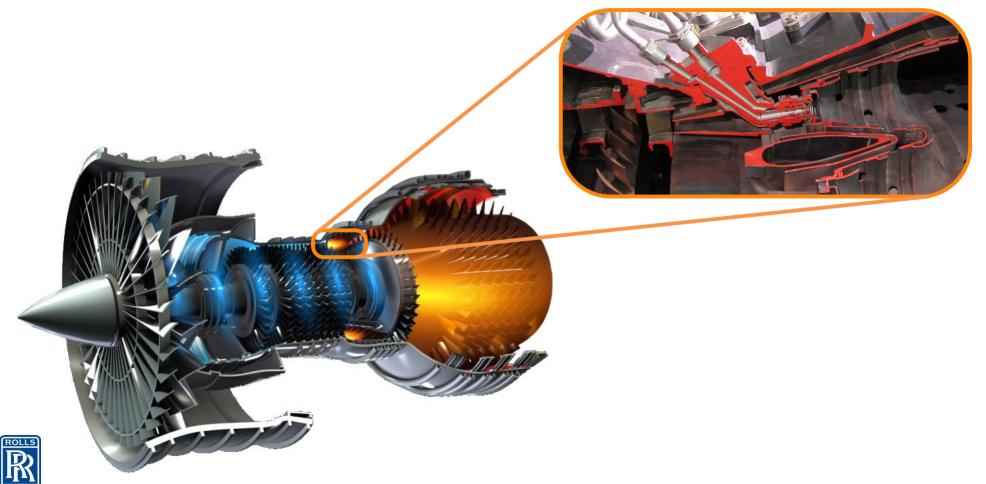
Information from noise

Unveil the unseen:
exploit information hidden in noise
B. Zviazhynski & GJC
Applied Intelligence **53**, 11966 (2023)

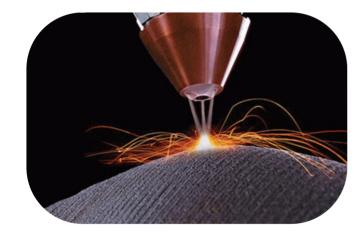
Nickel superalloys with Rolls Royce



Combustor in a jet engine



Defects form during printing



Laser

Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

Electricity

First predict weldability

Use 1000 weldability entries to understand complex composition → weldability model

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations give composition → defects extrapolation

Target properties

6

Elemental cost < 25 \$kg⁻¹

Density < 8500 kgm⁻³

γ' content < 25 wt%

Oxidation resistance < 0.3 mgcm⁻²

Defects < 0.15% defects

Phase stability > 99.0 wt%

 γ ' solvus > 1000°C

Thermal resistance $> 0.04 \text{ K}\Omega^{-1}\text{m}^{-3}$

Yield stress at 900°C > 200 MPa

Tensile strength at 900°C > 300 MPa

Tensile elongation at 700°C > 8%

1000hr stress rupture at 800°C > 100 MPa

Fatigue life at 500 MPa, 700°C > 10⁵ cycles

Probability of fulfiling each target


```
Elemental cost
                         < 25 $kg<sup>-1</sup>
```

< 8500 kgm⁻³ Density

< 25 wt% y' content

< 0.3 mgcm⁻² Oxidation resistance

Defects

y' solvus

Phase stability

Thermal resistance

Yield stress at 900°C

Fatigue life at 500 MPa, 700°C

< 0.15% defects

> 99.0 wt%

> 1000°C

 $> 0.04 \text{ K}\Omega^{-1}\text{m}^{-3}$

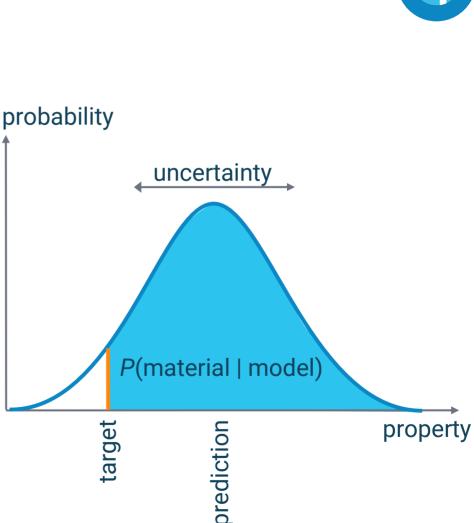
> 200 MPa

> 300 MPa

Tensile strength at 900°C

Tensile elongation at 700°C > 8%

> 10⁵ cycles



1000hr stress rupture at 800°C > 100 MPa

Composition and processing variables

Cr 19%

Mo 4.9%

W 1.2%

Zr 0.05%

Nb 3%

C 0.04%

Expose 0.8

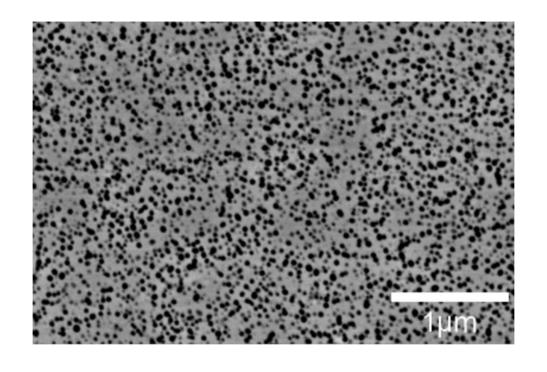
Al 2.9%

B 0.01%

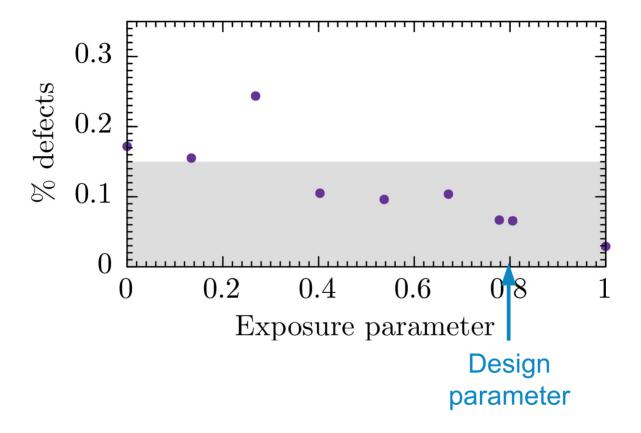
Ni

*Т*нт 1300°С

Microstructure



Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

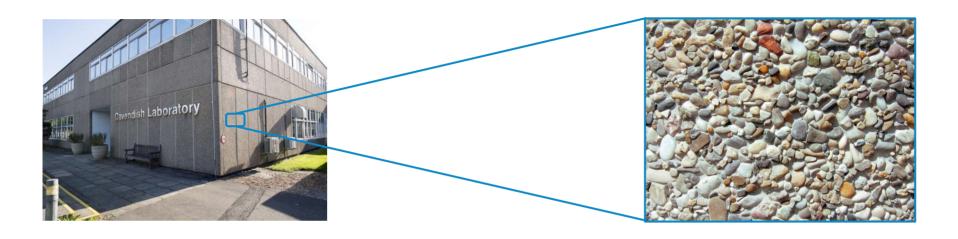


Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

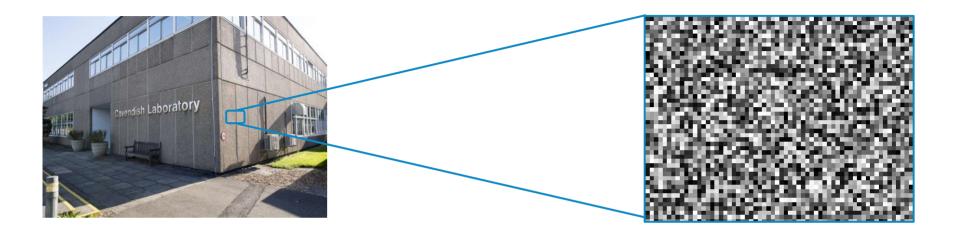
Exploit uncertainty to design concrete

Concrete in construction

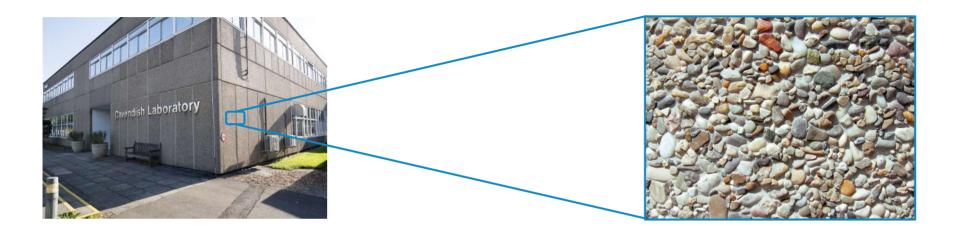
Cement & aggregate



Cement & aggregate look like noise

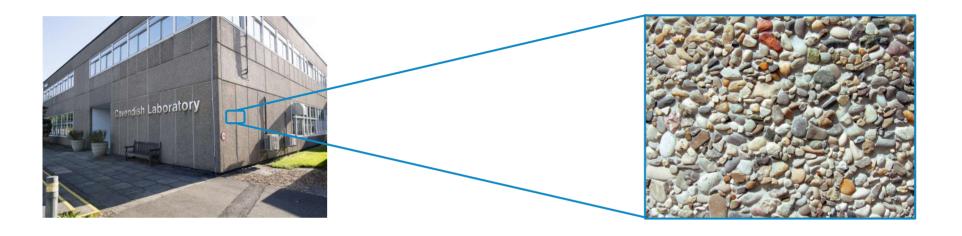


Mission



Design a concrete that is robust and environmentally friendly

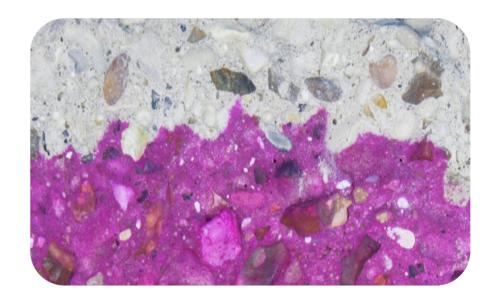
Mission



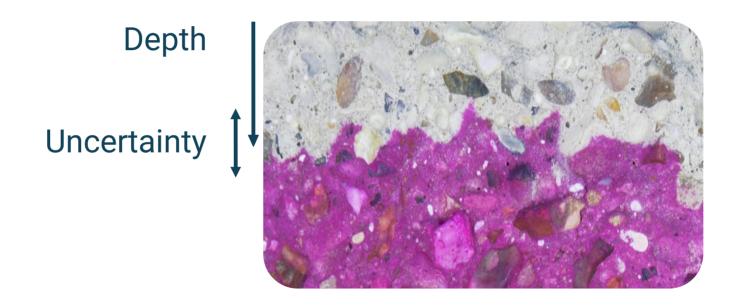
Design a concrete that is robust and environmentally friendly

Experimentally validate the concrete

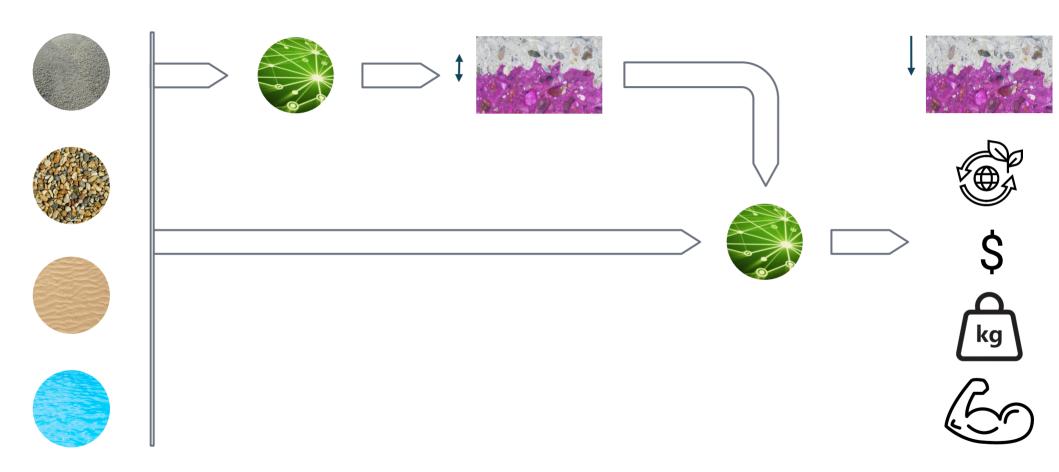
Carbonation is the probe of noise



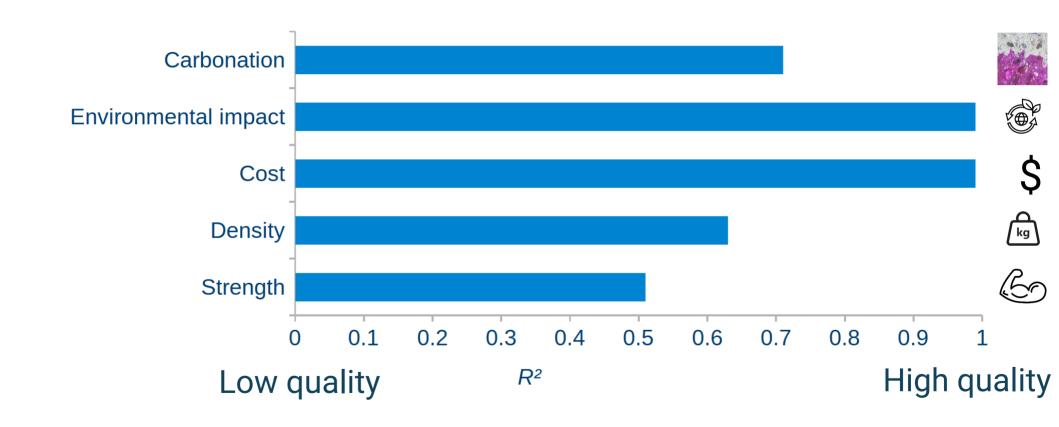
Depth and uncertainty in carbonation



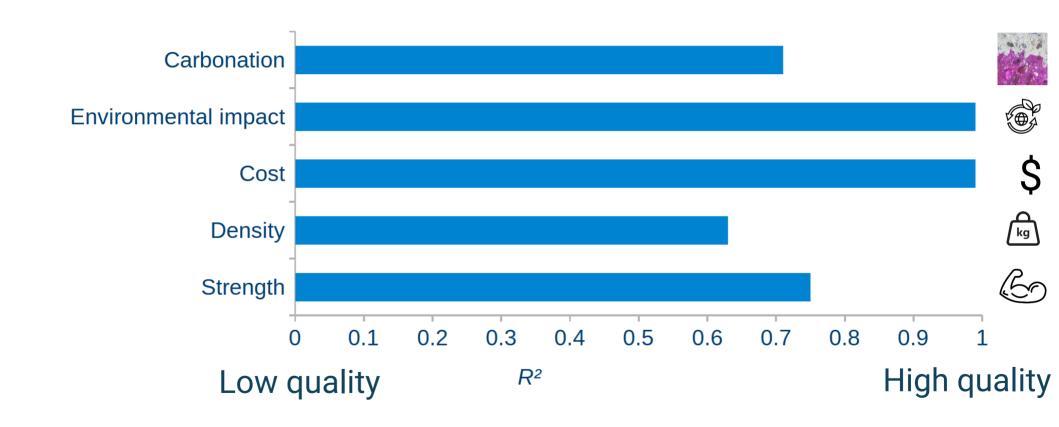
Machine learning exploits uncertainty



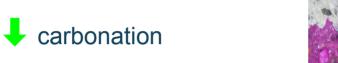
Original model accuracy

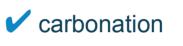


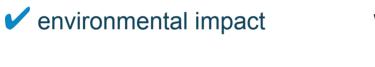
Uncertainty improves the model accuracy

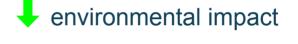


Concrete specification









✓ cost

✓ cost

strength

density

strength

Phase behavior targets

First mix

14.2% cement

48.9% gravel

28.4% sand

8.5% water

Second mix

10.5% cement

48.4% gravel

32.6% sand

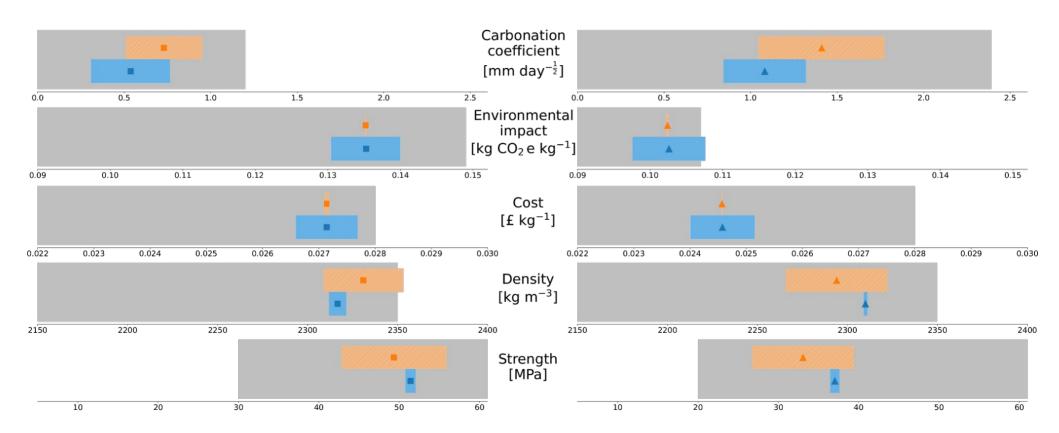
8.5% water

Concrete manufacture

Probabilistic selection and design of concrete using machine learning Data-Centric Engineering **4**, e9 (2023)

Experimental validation of the proposed mixes

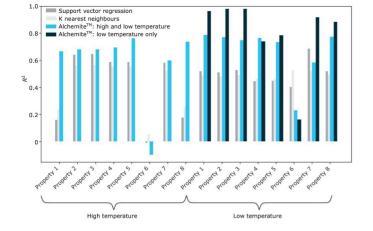
Second mix

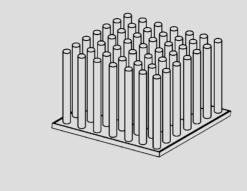


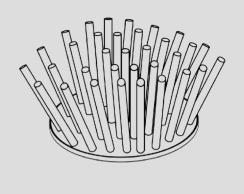
Experiment Model

Target

Real-life use of Alchemite™







Johnson Matthey Technology Review **66**, 130 (2022)

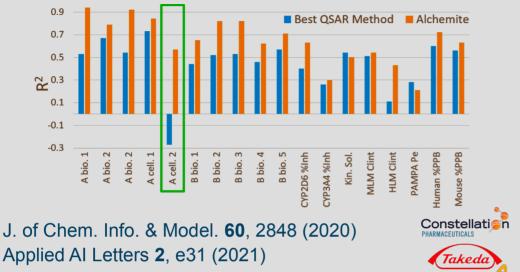
NASA Technical Memorandum 20220008637

## 4000 ## 3000 ## 1000 ## 1000	
0 250 500 750 1000 Temperature / °C	

	~			
Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301	L 193	269	5	238[23]
Steel AISI 301	193	267	5	221[23]
Al 1080 H18	51	124	5	120[23]
Al 5083 wroug	ht 117	191	14	300,190[4, 23]
Al 5086 wroug	${ m ht}$ 110	172	11	269,131[4, 23]
Al 5454 wroug	${ m ht}$ 102	149	14	124[23]
Al 5456 wroug	ht 130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science **147**, 176 (2018)



Journal of Computer-Aided

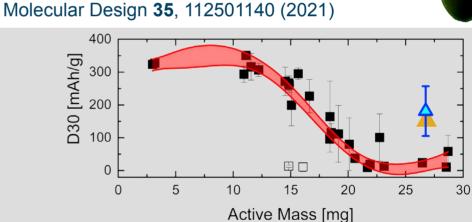
UNIVERSITYOF **BIRMINGHAM**

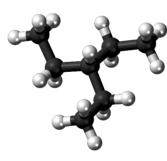
Insys

GRANTA

Molecular Pharmaceutics 19, 1488 (2022)

AstraZeneca





Nature Machine Intelligence 2, 161 (2020) Cell Reports Physical Science 2, 100683 (2021)

Fluid Phase Equilibria **501**, 112259 (2019) Journal of Chemical Physics **153**, 014102 (2020)

Intellegens offers the Alchemite™ product family

Scientists & engineers

Fast start, easy-to-use, visual

Option to deploy models

Data scientists Add to your ML toolkit

Optional connectors

Lab systems

Software & scripts

Sharing & collaboration

Alchemite™ Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimize

Alchemite™ Engine

Integrate into your workflow (API, Python)
Advanced configuration, enterprise deployment

Alchemite™ academic licenses available for non-comercial research

Alchemite™ enables machine learning beyond data

Exploit property-property correlations to design alloy for 3D printing

Extract information from **NOISE** to design **CONCRETE**

Generic approach applied to many physical, chemical, and biological sciences

Webinar Design of Experiments made easy with machine learning, 8 May

